]> crepu.dev Git - config.git/blob - djavu-asus/elpy/rpc-venv/lib/python3.11/site-packages/black/cache.py
Configuracion en desarrollo PC pega
[config.git] / djavu-asus / elpy / rpc-venv / lib / python3.11 / site-packages / black / cache.py
1 """Caching of formatted files with feature-based invalidation."""
2 import hashlib
3 import os
4 import pickle
5 import sys
6 import tempfile
7 from dataclasses import dataclass, field
8 from pathlib import Path
9 from typing import Dict, Iterable, NamedTuple, Set, Tuple
10
11 from platformdirs import user_cache_dir
12
13 from _black_version import version as __version__
14 from black.mode import Mode
15
16 if sys.version_info >= (3, 11):
17 from typing import Self
18 else:
19 from typing_extensions import Self
20
21
22 class FileData(NamedTuple):
23 st_mtime: float
24 st_size: int
25 hash: str
26
27
28 def get_cache_dir() -> Path:
29 """Get the cache directory used by black.
30
31 Users can customize this directory on all systems using `BLACK_CACHE_DIR`
32 environment variable. By default, the cache directory is the user cache directory
33 under the black application.
34
35 This result is immediately set to a constant `black.cache.CACHE_DIR` as to avoid
36 repeated calls.
37 """
38 # NOTE: Function mostly exists as a clean way to test getting the cache directory.
39 default_cache_dir = user_cache_dir("black", version=__version__)
40 cache_dir = Path(os.environ.get("BLACK_CACHE_DIR", default_cache_dir))
41 return cache_dir
42
43
44 CACHE_DIR = get_cache_dir()
45
46
47 def get_cache_file(mode: Mode) -> Path:
48 return CACHE_DIR / f"cache.{mode.get_cache_key()}.pickle"
49
50
51 @dataclass
52 class Cache:
53 mode: Mode
54 cache_file: Path
55 file_data: Dict[str, FileData] = field(default_factory=dict)
56
57 @classmethod
58 def read(cls, mode: Mode) -> Self:
59 """Read the cache if it exists and is well formed.
60
61 If it is not well formed, the call to write later should
62 resolve the issue.
63 """
64 cache_file = get_cache_file(mode)
65 if not cache_file.exists():
66 return cls(mode, cache_file)
67
68 with cache_file.open("rb") as fobj:
69 try:
70 data: Dict[str, Tuple[float, int, str]] = pickle.load(fobj)
71 file_data = {k: FileData(*v) for k, v in data.items()}
72 except (pickle.UnpicklingError, ValueError, IndexError):
73 return cls(mode, cache_file)
74
75 return cls(mode, cache_file, file_data)
76
77 @staticmethod
78 def hash_digest(path: Path) -> str:
79 """Return hash digest for path."""
80
81 data = path.read_bytes()
82 return hashlib.sha256(data).hexdigest()
83
84 @staticmethod
85 def get_file_data(path: Path) -> FileData:
86 """Return file data for path."""
87
88 stat = path.stat()
89 hash = Cache.hash_digest(path)
90 return FileData(stat.st_mtime, stat.st_size, hash)
91
92 def is_changed(self, source: Path) -> bool:
93 """Check if source has changed compared to cached version."""
94 res_src = source.resolve()
95 old = self.file_data.get(str(res_src))
96 if old is None:
97 return True
98
99 st = res_src.stat()
100 if st.st_size != old.st_size:
101 return True
102 if int(st.st_mtime) != int(old.st_mtime):
103 new_hash = Cache.hash_digest(res_src)
104 if new_hash != old.hash:
105 return True
106 return False
107
108 def filtered_cached(self, sources: Iterable[Path]) -> Tuple[Set[Path], Set[Path]]:
109 """Split an iterable of paths in `sources` into two sets.
110
111 The first contains paths of files that modified on disk or are not in the
112 cache. The other contains paths to non-modified files.
113 """
114 changed: Set[Path] = set()
115 done: Set[Path] = set()
116 for src in sources:
117 if self.is_changed(src):
118 changed.add(src)
119 else:
120 done.add(src)
121 return changed, done
122
123 def write(self, sources: Iterable[Path]) -> None:
124 """Update the cache file data and write a new cache file."""
125 self.file_data.update(
126 **{str(src.resolve()): Cache.get_file_data(src) for src in sources}
127 )
128 try:
129 CACHE_DIR.mkdir(parents=True, exist_ok=True)
130 with tempfile.NamedTemporaryFile(
131 dir=str(self.cache_file.parent), delete=False
132 ) as f:
133 # We store raw tuples in the cache because pickling NamedTuples
134 # doesn't work with mypyc on Python 3.8, and because it's faster.
135 data: Dict[str, Tuple[float, int, str]] = {
136 k: (*v,) for k, v in self.file_data.items()
137 }
138 pickle.dump(data, f, protocol=4)
139 os.replace(f.name, self.cache_file)
140 except OSError:
141 pass