]> crepu.dev Git - config.git/blob - djavu-asus/elpy/rpc-venv/lib/python3.11/site-packages/jedi/inference/value/iterable.py
Configuracion en desarrollo PC pega
[config.git] / djavu-asus / elpy / rpc-venv / lib / python3.11 / site-packages / jedi / inference / value / iterable.py
1 """
2 Contains all classes and functions to deal with lists, dicts, generators and
3 iterators in general.
4 """
5 from jedi.inference import compiled
6 from jedi.inference import analysis
7 from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
8 LazyTreeValue
9 from jedi.inference.helpers import get_int_or_none, is_string, \
10 reraise_getitem_errors, SimpleGetItemNotFound
11 from jedi.inference.utils import safe_property, to_list
12 from jedi.inference.cache import inference_state_method_cache
13 from jedi.inference.filters import LazyAttributeOverwrite, publish_method
14 from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \
15 ContextualizedNode, iterate_values, sentinel, \
16 LazyValueWrapper
17 from jedi.parser_utils import get_sync_comp_fors
18 from jedi.inference.context import CompForContext
19 from jedi.inference.value.dynamic_arrays import check_array_additions
20
21
22 class IterableMixin:
23 def py__next__(self, contextualized_node=None):
24 return self.py__iter__(contextualized_node)
25
26 def py__stop_iteration_returns(self):
27 return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
28
29 # At the moment, safe values are simple values like "foo", 1 and not
30 # lists/dicts. Therefore as a small speed optimization we can just do the
31 # default instead of resolving the lazy wrapped values, that are just
32 # doing this in the end as well.
33 # This mostly speeds up patterns like `sys.version_info >= (3, 0)` in
34 # typeshed.
35 get_safe_value = Value.get_safe_value
36
37
38 class GeneratorBase(LazyAttributeOverwrite, IterableMixin):
39 array_type = None
40
41 def _get_wrapped_value(self):
42 instance, = self._get_cls().execute_annotation()
43 return instance
44
45 def _get_cls(self):
46 generator, = self.inference_state.typing_module.py__getattribute__('Generator')
47 return generator
48
49 def py__bool__(self):
50 return True
51
52 @publish_method('__iter__')
53 def _iter(self, arguments):
54 return ValueSet([self])
55
56 @publish_method('send')
57 @publish_method('__next__')
58 def _next(self, arguments):
59 return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
60
61 def py__stop_iteration_returns(self):
62 return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])
63
64 @property
65 def name(self):
66 return compiled.CompiledValueName(self, 'Generator')
67
68 def get_annotated_class_object(self):
69 from jedi.inference.gradual.generics import TupleGenericManager
70 gen_values = self.merge_types_of_iterate().py__class__()
71 gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES))
72 return self._get_cls().with_generics(gm)
73
74
75 class Generator(GeneratorBase):
76 """Handling of `yield` functions."""
77 def __init__(self, inference_state, func_execution_context):
78 super().__init__(inference_state)
79 self._func_execution_context = func_execution_context
80
81 def py__iter__(self, contextualized_node=None):
82 iterators = self._func_execution_context.infer_annotations()
83 if iterators:
84 return iterators.iterate(contextualized_node)
85 return self._func_execution_context.get_yield_lazy_values()
86
87 def py__stop_iteration_returns(self):
88 return self._func_execution_context.get_return_values()
89
90 def __repr__(self):
91 return "<%s of %s>" % (type(self).__name__, self._func_execution_context)
92
93
94 def comprehension_from_atom(inference_state, value, atom):
95 bracket = atom.children[0]
96 test_list_comp = atom.children[1]
97
98 if bracket == '{':
99 if atom.children[1].children[1] == ':':
100 sync_comp_for = test_list_comp.children[3]
101 if sync_comp_for.type == 'comp_for':
102 sync_comp_for = sync_comp_for.children[1]
103
104 return DictComprehension(
105 inference_state,
106 value,
107 sync_comp_for_node=sync_comp_for,
108 key_node=test_list_comp.children[0],
109 value_node=test_list_comp.children[2],
110 )
111 else:
112 cls = SetComprehension
113 elif bracket == '(':
114 cls = GeneratorComprehension
115 elif bracket == '[':
116 cls = ListComprehension
117
118 sync_comp_for = test_list_comp.children[1]
119 if sync_comp_for.type == 'comp_for':
120 sync_comp_for = sync_comp_for.children[1]
121
122 return cls(
123 inference_state,
124 defining_context=value,
125 sync_comp_for_node=sync_comp_for,
126 entry_node=test_list_comp.children[0],
127 )
128
129
130 class ComprehensionMixin:
131 @inference_state_method_cache()
132 def _get_comp_for_context(self, parent_context, comp_for):
133 return CompForContext(parent_context, comp_for)
134
135 def _nested(self, comp_fors, parent_context=None):
136 comp_for = comp_fors[0]
137
138 is_async = comp_for.parent.type == 'comp_for'
139
140 input_node = comp_for.children[3]
141 parent_context = parent_context or self._defining_context
142 input_types = parent_context.infer_node(input_node)
143
144 cn = ContextualizedNode(parent_context, input_node)
145 iterated = input_types.iterate(cn, is_async=is_async)
146 exprlist = comp_for.children[1]
147 for i, lazy_value in enumerate(iterated):
148 types = lazy_value.infer()
149 dct = unpack_tuple_to_dict(parent_context, types, exprlist)
150 context = self._get_comp_for_context(
151 parent_context,
152 comp_for,
153 )
154 with context.predefine_names(comp_for, dct):
155 try:
156 yield from self._nested(comp_fors[1:], context)
157 except IndexError:
158 iterated = context.infer_node(self._entry_node)
159 if self.array_type == 'dict':
160 yield iterated, context.infer_node(self._value_node)
161 else:
162 yield iterated
163
164 @inference_state_method_cache(default=[])
165 @to_list
166 def _iterate(self):
167 comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node))
168 yield from self._nested(comp_fors)
169
170 def py__iter__(self, contextualized_node=None):
171 for set_ in self._iterate():
172 yield LazyKnownValues(set_)
173
174 def __repr__(self):
175 return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node)
176
177
178 class _DictMixin:
179 def _get_generics(self):
180 return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values())
181
182
183 class Sequence(LazyAttributeOverwrite, IterableMixin):
184 api_type = 'instance'
185
186 @property
187 def name(self):
188 return compiled.CompiledValueName(self, self.array_type)
189
190 def _get_generics(self):
191 return (self.merge_types_of_iterate().py__class__(),)
192
193 @inference_state_method_cache(default=())
194 def _cached_generics(self):
195 return self._get_generics()
196
197 def _get_wrapped_value(self):
198 from jedi.inference.gradual.base import GenericClass
199 from jedi.inference.gradual.generics import TupleGenericManager
200 klass = compiled.builtin_from_name(self.inference_state, self.array_type)
201 c, = GenericClass(
202 klass,
203 TupleGenericManager(self._cached_generics())
204 ).execute_annotation()
205 return c
206
207 def py__bool__(self):
208 return None # We don't know the length, because of appends.
209
210 @safe_property
211 def parent(self):
212 return self.inference_state.builtins_module
213
214 def py__getitem__(self, index_value_set, contextualized_node):
215 if self.array_type == 'dict':
216 return self._dict_values()
217 return iterate_values(ValueSet([self]))
218
219
220 class _BaseComprehension(ComprehensionMixin):
221 def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node):
222 assert sync_comp_for_node.type == 'sync_comp_for'
223 super().__init__(inference_state)
224 self._defining_context = defining_context
225 self._sync_comp_for_node = sync_comp_for_node
226 self._entry_node = entry_node
227
228
229 class ListComprehension(_BaseComprehension, Sequence):
230 array_type = 'list'
231
232 def py__simple_getitem__(self, index):
233 if isinstance(index, slice):
234 return ValueSet([self])
235
236 all_types = list(self.py__iter__())
237 with reraise_getitem_errors(IndexError, TypeError):
238 lazy_value = all_types[index]
239 return lazy_value.infer()
240
241
242 class SetComprehension(_BaseComprehension, Sequence):
243 array_type = 'set'
244
245
246 class GeneratorComprehension(_BaseComprehension, GeneratorBase):
247 pass
248
249
250 class _DictKeyMixin:
251 # TODO merge with _DictMixin?
252 def get_mapping_item_values(self):
253 return self._dict_keys(), self._dict_values()
254
255 def get_key_values(self):
256 # TODO merge with _dict_keys?
257 return self._dict_keys()
258
259
260 class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin):
261 array_type = 'dict'
262
263 def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node):
264 assert sync_comp_for_node.type == 'sync_comp_for'
265 super().__init__(inference_state)
266 self._defining_context = defining_context
267 self._sync_comp_for_node = sync_comp_for_node
268 self._entry_node = key_node
269 self._value_node = value_node
270
271 def py__iter__(self, contextualized_node=None):
272 for keys, values in self._iterate():
273 yield LazyKnownValues(keys)
274
275 def py__simple_getitem__(self, index):
276 for keys, values in self._iterate():
277 for k in keys:
278 # Be careful in the future if refactoring, index could be a
279 # slice object.
280 if k.get_safe_value(default=object()) == index:
281 return values
282 raise SimpleGetItemNotFound()
283
284 def _dict_keys(self):
285 return ValueSet.from_sets(keys for keys, values in self._iterate())
286
287 def _dict_values(self):
288 return ValueSet.from_sets(values for keys, values in self._iterate())
289
290 @publish_method('values')
291 def _imitate_values(self, arguments):
292 lazy_value = LazyKnownValues(self._dict_values())
293 return ValueSet([FakeList(self.inference_state, [lazy_value])])
294
295 @publish_method('items')
296 def _imitate_items(self, arguments):
297 lazy_values = [
298 LazyKnownValue(
299 FakeTuple(
300 self.inference_state,
301 [LazyKnownValues(key),
302 LazyKnownValues(value)]
303 )
304 )
305 for key, value in self._iterate()
306 ]
307
308 return ValueSet([FakeList(self.inference_state, lazy_values)])
309
310 def exact_key_items(self):
311 # NOTE: A smarter thing can probably done here to achieve better
312 # completions, but at least like this jedi doesn't crash
313 return []
314
315
316 class SequenceLiteralValue(Sequence):
317 _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist'
318 mapping = {'(': 'tuple',
319 '[': 'list',
320 '{': 'set'}
321
322 def __init__(self, inference_state, defining_context, atom):
323 super().__init__(inference_state)
324 self.atom = atom
325 self._defining_context = defining_context
326
327 if self.atom.type in self._TUPLE_LIKE:
328 self.array_type = 'tuple'
329 else:
330 self.array_type = SequenceLiteralValue.mapping[atom.children[0]]
331 """The builtin name of the array (list, set, tuple or dict)."""
332
333 def _get_generics(self):
334 if self.array_type == 'tuple':
335 return tuple(x.infer().py__class__() for x in self.py__iter__())
336 return super()._get_generics()
337
338 def py__simple_getitem__(self, index):
339 """Here the index is an int/str. Raises IndexError/KeyError."""
340 if isinstance(index, slice):
341 return ValueSet([self])
342 else:
343 with reraise_getitem_errors(TypeError, KeyError, IndexError):
344 node = self.get_tree_entries()[index]
345 if node == ':' or node.type == 'subscript':
346 return NO_VALUES
347 return self._defining_context.infer_node(node)
348
349 def py__iter__(self, contextualized_node=None):
350 """
351 While values returns the possible values for any array field, this
352 function returns the value for a certain index.
353 """
354 for node in self.get_tree_entries():
355 if node == ':' or node.type == 'subscript':
356 # TODO this should probably use at least part of the code
357 # of infer_subscript_list.
358 yield LazyKnownValue(Slice(self._defining_context, None, None, None))
359 else:
360 yield LazyTreeValue(self._defining_context, node)
361 yield from check_array_additions(self._defining_context, self)
362
363 def py__len__(self):
364 # This function is not really used often. It's more of a try.
365 return len(self.get_tree_entries())
366
367 def get_tree_entries(self):
368 c = self.atom.children
369
370 if self.atom.type in self._TUPLE_LIKE:
371 return c[::2]
372
373 array_node = c[1]
374 if array_node in (']', '}', ')'):
375 return [] # Direct closing bracket, doesn't contain items.
376
377 if array_node.type == 'testlist_comp':
378 # filter out (for now) pep 448 single-star unpacking
379 return [value for value in array_node.children[::2]
380 if value.type != "star_expr"]
381 elif array_node.type == 'dictorsetmaker':
382 kv = []
383 iterator = iter(array_node.children)
384 for key in iterator:
385 if key == "**":
386 # dict with pep 448 double-star unpacking
387 # for now ignoring the values imported by **
388 next(iterator)
389 next(iterator, None) # Possible comma.
390 else:
391 op = next(iterator, None)
392 if op is None or op == ',':
393 if key.type == "star_expr":
394 # pep 448 single-star unpacking
395 # for now ignoring values imported by *
396 pass
397 else:
398 kv.append(key) # A set.
399 else:
400 assert op == ':' # A dict.
401 kv.append((key, next(iterator)))
402 next(iterator, None) # Possible comma.
403 return kv
404 else:
405 if array_node.type == "star_expr":
406 # pep 448 single-star unpacking
407 # for now ignoring values imported by *
408 return []
409 else:
410 return [array_node]
411
412 def __repr__(self):
413 return "<%s of %s>" % (self.__class__.__name__, self.atom)
414
415
416 class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin):
417 array_type = 'dict'
418
419 def __init__(self, inference_state, defining_context, atom):
420 # Intentionally don't call the super class. This is definitely a sign
421 # that the architecture is bad and we should refactor.
422 Sequence.__init__(self, inference_state)
423 self._defining_context = defining_context
424 self.atom = atom
425
426 def py__simple_getitem__(self, index):
427 """Here the index is an int/str. Raises IndexError/KeyError."""
428 compiled_value_index = compiled.create_simple_object(self.inference_state, index)
429 for key, value in self.get_tree_entries():
430 for k in self._defining_context.infer_node(key):
431 for key_v in k.execute_operation(compiled_value_index, '=='):
432 if key_v.get_safe_value():
433 return self._defining_context.infer_node(value)
434 raise SimpleGetItemNotFound('No key found in dictionary %s.' % self)
435
436 def py__iter__(self, contextualized_node=None):
437 """
438 While values returns the possible values for any array field, this
439 function returns the value for a certain index.
440 """
441 # Get keys.
442 types = NO_VALUES
443 for k, _ in self.get_tree_entries():
444 types |= self._defining_context.infer_node(k)
445 # We don't know which dict index comes first, therefore always
446 # yield all the types.
447 for _ in types:
448 yield LazyKnownValues(types)
449
450 @publish_method('values')
451 def _imitate_values(self, arguments):
452 lazy_value = LazyKnownValues(self._dict_values())
453 return ValueSet([FakeList(self.inference_state, [lazy_value])])
454
455 @publish_method('items')
456 def _imitate_items(self, arguments):
457 lazy_values = [
458 LazyKnownValue(FakeTuple(
459 self.inference_state,
460 (LazyTreeValue(self._defining_context, key_node),
461 LazyTreeValue(self._defining_context, value_node))
462 )) for key_node, value_node in self.get_tree_entries()
463 ]
464
465 return ValueSet([FakeList(self.inference_state, lazy_values)])
466
467 def exact_key_items(self):
468 """
469 Returns a generator of tuples like dict.items(), where the key is
470 resolved (as a string) and the values are still lazy values.
471 """
472 for key_node, value in self.get_tree_entries():
473 for key in self._defining_context.infer_node(key_node):
474 if is_string(key):
475 yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)
476
477 def _dict_values(self):
478 return ValueSet.from_sets(
479 self._defining_context.infer_node(v)
480 for k, v in self.get_tree_entries()
481 )
482
483 def _dict_keys(self):
484 return ValueSet.from_sets(
485 self._defining_context.infer_node(k)
486 for k, v in self.get_tree_entries()
487 )
488
489
490 class _FakeSequence(Sequence):
491 def __init__(self, inference_state, lazy_value_list):
492 """
493 type should be one of "tuple", "list"
494 """
495 super().__init__(inference_state)
496 self._lazy_value_list = lazy_value_list
497
498 def py__simple_getitem__(self, index):
499 if isinstance(index, slice):
500 return ValueSet([self])
501
502 with reraise_getitem_errors(IndexError, TypeError):
503 lazy_value = self._lazy_value_list[index]
504 return lazy_value.infer()
505
506 def py__iter__(self, contextualized_node=None):
507 return self._lazy_value_list
508
509 def py__bool__(self):
510 return bool(len(self._lazy_value_list))
511
512 def __repr__(self):
513 return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)
514
515
516 class FakeTuple(_FakeSequence):
517 array_type = 'tuple'
518
519
520 class FakeList(_FakeSequence):
521 array_type = 'tuple'
522
523
524 class FakeDict(_DictMixin, Sequence, _DictKeyMixin):
525 array_type = 'dict'
526
527 def __init__(self, inference_state, dct):
528 super().__init__(inference_state)
529 self._dct = dct
530
531 def py__iter__(self, contextualized_node=None):
532 for key in self._dct:
533 yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key))
534
535 def py__simple_getitem__(self, index):
536 with reraise_getitem_errors(KeyError, TypeError):
537 lazy_value = self._dct[index]
538 return lazy_value.infer()
539
540 @publish_method('values')
541 def _values(self, arguments):
542 return ValueSet([FakeTuple(
543 self.inference_state,
544 [LazyKnownValues(self._dict_values())]
545 )])
546
547 def _dict_values(self):
548 return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values())
549
550 def _dict_keys(self):
551 return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
552
553 def exact_key_items(self):
554 return self._dct.items()
555
556 def __repr__(self):
557 return '<%s: %s>' % (self.__class__.__name__, self._dct)
558
559
560 class MergedArray(Sequence):
561 def __init__(self, inference_state, arrays):
562 super().__init__(inference_state)
563 self.array_type = arrays[-1].array_type
564 self._arrays = arrays
565
566 def py__iter__(self, contextualized_node=None):
567 for array in self._arrays:
568 yield from array.py__iter__()
569
570 def py__simple_getitem__(self, index):
571 return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())
572
573
574 def unpack_tuple_to_dict(context, types, exprlist):
575 """
576 Unpacking tuple assignments in for statements and expr_stmts.
577 """
578 if exprlist.type == 'name':
579 return {exprlist.value: types}
580 elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
581 return unpack_tuple_to_dict(context, types, exprlist.children[1])
582 elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
583 'testlist_star_expr'):
584 dct = {}
585 parts = iter(exprlist.children[::2])
586 n = 0
587 for lazy_value in types.iterate(ContextualizedNode(context, exprlist)):
588 n += 1
589 try:
590 part = next(parts)
591 except StopIteration:
592 analysis.add(context, 'value-error-too-many-values', part,
593 message="ValueError: too many values to unpack (expected %s)" % n)
594 else:
595 dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part))
596 has_parts = next(parts, None)
597 if types and has_parts is not None:
598 analysis.add(context, 'value-error-too-few-values', has_parts,
599 message="ValueError: need more than %s values to unpack" % n)
600 return dct
601 elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
602 # Something like ``arr[x], var = ...``.
603 # This is something that is not yet supported, would also be difficult
604 # to write into a dict.
605 return {}
606 elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings
607 # Currently we're not supporting them.
608 return {}
609 raise NotImplementedError
610
611
612 class Slice(LazyValueWrapper):
613 def __init__(self, python_context, start, stop, step):
614 self.inference_state = python_context.inference_state
615 self._context = python_context
616 # All of them are either a Precedence or None.
617 self._start = start
618 self._stop = stop
619 self._step = step
620
621 def _get_wrapped_value(self):
622 value = compiled.builtin_from_name(self._context.inference_state, 'slice')
623 slice_value, = value.execute_with_values()
624 return slice_value
625
626 def get_safe_value(self, default=sentinel):
627 """
628 Imitate CompiledValue.obj behavior and return a ``builtin.slice()``
629 object.
630 """
631 def get(element):
632 if element is None:
633 return None
634
635 result = self._context.infer_node(element)
636 if len(result) != 1:
637 # For simplicity, we want slices to be clear defined with just
638 # one type. Otherwise we will return an empty slice object.
639 raise IndexError
640
641 value, = result
642 return get_int_or_none(value)
643
644 try:
645 return slice(get(self._start), get(self._stop), get(self._step))
646 except IndexError:
647 return slice(None, None, None)