]> crepu.dev Git - config.git/blob - djavu-asus/elpy/rpc-venv/lib/python3.11/site-packages/mypy_extensions.py
Configuracion en desarrollo PC pega
[config.git] / djavu-asus / elpy / rpc-venv / lib / python3.11 / site-packages / mypy_extensions.py
1 """Defines experimental extensions to the standard "typing" module that are
2 supported by the mypy typechecker.
3
4 Example usage:
5 from mypy_extensions import TypedDict
6 """
7
8 from typing import Any
9
10 import sys
11 # _type_check is NOT a part of public typing API, it is used here only to mimic
12 # the (convenient) behavior of types provided by typing module.
13 from typing import _type_check # type: ignore
14
15
16 def _check_fails(cls, other):
17 try:
18 if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']:
19 # Typed dicts are only for static structural subtyping.
20 raise TypeError('TypedDict does not support instance and class checks')
21 except (AttributeError, ValueError):
22 pass
23 return False
24
25
26 def _dict_new(cls, *args, **kwargs):
27 return dict(*args, **kwargs)
28
29
30 def _typeddict_new(cls, _typename, _fields=None, **kwargs):
31 total = kwargs.pop('total', True)
32 if _fields is None:
33 _fields = kwargs
34 elif kwargs:
35 raise TypeError("TypedDict takes either a dict or keyword arguments,"
36 " but not both")
37
38 ns = {'__annotations__': dict(_fields), '__total__': total}
39 try:
40 # Setting correct module is necessary to make typed dict classes pickleable.
41 ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
42 except (AttributeError, ValueError):
43 pass
44
45 return _TypedDictMeta(_typename, (), ns)
46
47
48 class _TypedDictMeta(type):
49 def __new__(cls, name, bases, ns, total=True):
50 # Create new typed dict class object.
51 # This method is called directly when TypedDict is subclassed,
52 # or via _typeddict_new when TypedDict is instantiated. This way
53 # TypedDict supports all three syntaxes described in its docstring.
54 # Subclasses and instances of TypedDict return actual dictionaries
55 # via _dict_new.
56 ns['__new__'] = _typeddict_new if name == 'TypedDict' else _dict_new
57 tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)
58
59 anns = ns.get('__annotations__', {})
60 msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
61 anns = {n: _type_check(tp, msg) for n, tp in anns.items()}
62 for base in bases:
63 anns.update(base.__dict__.get('__annotations__', {}))
64 tp_dict.__annotations__ = anns
65 if not hasattr(tp_dict, '__total__'):
66 tp_dict.__total__ = total
67 return tp_dict
68
69 __instancecheck__ = __subclasscheck__ = _check_fails
70
71
72 TypedDict = _TypedDictMeta('TypedDict', (dict,), {})
73 TypedDict.__module__ = __name__
74 TypedDict.__doc__ = \
75 """A simple typed name space. At runtime it is equivalent to a plain dict.
76
77 TypedDict creates a dictionary type that expects all of its
78 instances to have a certain set of keys, with each key
79 associated with a value of a consistent type. This expectation
80 is not checked at runtime but is only enforced by typecheckers.
81 Usage::
82
83 Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
84 a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
85 b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
86 assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
87
88 The type info could be accessed via Point2D.__annotations__. TypedDict
89 supports two additional equivalent forms::
90
91 Point2D = TypedDict('Point2D', x=int, y=int, label=str)
92
93 class Point2D(TypedDict):
94 x: int
95 y: int
96 label: str
97
98 The latter syntax is only supported in Python 3.6+, while two other
99 syntax forms work for 3.2+
100 """
101
102 # Argument constructors for making more-detailed Callables. These all just
103 # return their type argument, to make them complete noops in terms of the
104 # `typing` module.
105
106
107 def Arg(type=Any, name=None):
108 """A normal positional argument"""
109 return type
110
111
112 def DefaultArg(type=Any, name=None):
113 """A positional argument with a default value"""
114 return type
115
116
117 def NamedArg(type=Any, name=None):
118 """A keyword-only argument"""
119 return type
120
121
122 def DefaultNamedArg(type=Any, name=None):
123 """A keyword-only argument with a default value"""
124 return type
125
126
127 def VarArg(type=Any):
128 """A *args-style variadic positional argument"""
129 return type
130
131
132 def KwArg(type=Any):
133 """A **kwargs-style variadic keyword argument"""
134 return type
135
136
137 # Return type that indicates a function does not return
138 class NoReturn: pass
139
140
141 def trait(cls):
142 return cls
143
144
145 def mypyc_attr(*attrs, **kwattrs):
146 return lambda x: x
147
148
149 # TODO: We may want to try to properly apply this to any type
150 # variables left over...
151 class _FlexibleAliasClsApplied:
152 def __init__(self, val):
153 self.val = val
154
155 def __getitem__(self, args):
156 return self.val
157
158
159 class _FlexibleAliasCls:
160 def __getitem__(self, args):
161 return _FlexibleAliasClsApplied(args[-1])
162
163
164 FlexibleAlias = _FlexibleAliasCls()
165
166
167 class _NativeIntMeta(type):
168 def __instancecheck__(cls, inst):
169 return isinstance(inst, int)
170
171
172 _sentinel = object()
173
174
175 class i64(metaclass=_NativeIntMeta):
176 def __new__(cls, x=0, base=_sentinel):
177 if base is not _sentinel:
178 return int(x, base)
179 return int(x)
180
181
182 class i32(metaclass=_NativeIntMeta):
183 def __new__(cls, x=0, base=_sentinel):
184 if base is not _sentinel:
185 return int(x, base)
186 return int(x)
187
188
189 class i16(metaclass=_NativeIntMeta):
190 def __new__(cls, x=0, base=_sentinel):
191 if base is not _sentinel:
192 return int(x, base)
193 return int(x)
194
195
196 class u8(metaclass=_NativeIntMeta):
197 def __new__(cls, x=0, base=_sentinel):
198 if base is not _sentinel:
199 return int(x, base)
200 return int(x)
201
202
203 for _int_type in i64, i32, i16, u8:
204 _int_type.__doc__ = \
205 """A native fixed-width integer type when used with mypyc.
206
207 In code not compiled with mypyc, behaves like the 'int' type in these
208 runtime contexts:
209
210 * {name}(x[, base=n]) converts a number or string to 'int'
211 * isinstance(x, {name}) is the same as isinstance(x, int)
212 """.format(name=_int_type.__name__)
213 del _int_type