]> crepu.dev Git - config.git/blob - djavu-asus/elpy/rpc-venv/lib/python3.11/site-packages/black/trans.py
Archivo de configuraciĆ³n de la terminal
[config.git] / djavu-asus / elpy / rpc-venv / lib / python3.11 / site-packages / black / trans.py
1 """
2 String transformers that can split and merge strings.
3 """
4 import re
5 from abc import ABC, abstractmethod
6 from collections import defaultdict
7 from dataclasses import dataclass
8 from typing import (
9 Any,
10 Callable,
11 ClassVar,
12 Collection,
13 Dict,
14 Final,
15 Iterable,
16 Iterator,
17 List,
18 Literal,
19 Optional,
20 Sequence,
21 Set,
22 Tuple,
23 TypeVar,
24 Union,
25 )
26
27 from mypy_extensions import trait
28
29 from black.comments import contains_pragma_comment
30 from black.lines import Line, append_leaves
31 from black.mode import Feature, Mode
32 from black.nodes import (
33 CLOSING_BRACKETS,
34 OPENING_BRACKETS,
35 STANDALONE_COMMENT,
36 is_empty_lpar,
37 is_empty_par,
38 is_empty_rpar,
39 is_part_of_annotation,
40 parent_type,
41 replace_child,
42 syms,
43 )
44 from black.rusty import Err, Ok, Result
45 from black.strings import (
46 assert_is_leaf_string,
47 count_chars_in_width,
48 get_string_prefix,
49 has_triple_quotes,
50 normalize_string_quotes,
51 str_width,
52 )
53 from blib2to3.pgen2 import token
54 from blib2to3.pytree import Leaf, Node
55
56
57 class CannotTransform(Exception):
58 """Base class for errors raised by Transformers."""
59
60
61 # types
62 T = TypeVar("T")
63 LN = Union[Leaf, Node]
64 Transformer = Callable[[Line, Collection[Feature], Mode], Iterator[Line]]
65 Index = int
66 NodeType = int
67 ParserState = int
68 StringID = int
69 TResult = Result[T, CannotTransform] # (T)ransform Result
70 TMatchResult = TResult[List[Index]]
71
72 SPLIT_SAFE_CHARS = frozenset(["\u3001", "\u3002", "\uff0c"]) # East Asian stops
73
74
75 def TErr(err_msg: str) -> Err[CannotTransform]:
76 """(T)ransform Err
77
78 Convenience function used when working with the TResult type.
79 """
80 cant_transform = CannotTransform(err_msg)
81 return Err(cant_transform)
82
83
84 def hug_power_op(
85 line: Line, features: Collection[Feature], mode: Mode
86 ) -> Iterator[Line]:
87 """A transformer which normalizes spacing around power operators."""
88
89 # Performance optimization to avoid unnecessary Leaf clones and other ops.
90 for leaf in line.leaves:
91 if leaf.type == token.DOUBLESTAR:
92 break
93 else:
94 raise CannotTransform("No doublestar token was found in the line.")
95
96 def is_simple_lookup(index: int, step: Literal[1, -1]) -> bool:
97 # Brackets and parentheses indicate calls, subscripts, etc. ...
98 # basically stuff that doesn't count as "simple". Only a NAME lookup
99 # or dotted lookup (eg. NAME.NAME) is OK.
100 if step == -1:
101 disallowed = {token.RPAR, token.RSQB}
102 else:
103 disallowed = {token.LPAR, token.LSQB}
104
105 while 0 <= index < len(line.leaves):
106 current = line.leaves[index]
107 if current.type in disallowed:
108 return False
109 if current.type not in {token.NAME, token.DOT} or current.value == "for":
110 # If the current token isn't disallowed, we'll assume this is simple as
111 # only the disallowed tokens are semantically attached to this lookup
112 # expression we're checking. Also, stop early if we hit the 'for' bit
113 # of a comprehension.
114 return True
115
116 index += step
117
118 return True
119
120 def is_simple_operand(index: int, kind: Literal["base", "exponent"]) -> bool:
121 # An operand is considered "simple" if's a NAME, a numeric CONSTANT, a simple
122 # lookup (see above), with or without a preceding unary operator.
123 start = line.leaves[index]
124 if start.type in {token.NAME, token.NUMBER}:
125 return is_simple_lookup(index, step=(1 if kind == "exponent" else -1))
126
127 if start.type in {token.PLUS, token.MINUS, token.TILDE}:
128 if line.leaves[index + 1].type in {token.NAME, token.NUMBER}:
129 # step is always one as bases with a preceding unary op will be checked
130 # for simplicity starting from the next token (so it'll hit the check
131 # above).
132 return is_simple_lookup(index + 1, step=1)
133
134 return False
135
136 new_line = line.clone()
137 should_hug = False
138 for idx, leaf in enumerate(line.leaves):
139 new_leaf = leaf.clone()
140 if should_hug:
141 new_leaf.prefix = ""
142 should_hug = False
143
144 should_hug = (
145 (0 < idx < len(line.leaves) - 1)
146 and leaf.type == token.DOUBLESTAR
147 and is_simple_operand(idx - 1, kind="base")
148 and line.leaves[idx - 1].value != "lambda"
149 and is_simple_operand(idx + 1, kind="exponent")
150 )
151 if should_hug:
152 new_leaf.prefix = ""
153
154 # We have to be careful to make a new line properly:
155 # - bracket related metadata must be maintained (handled by Line.append)
156 # - comments need to copied over, updating the leaf IDs they're attached to
157 new_line.append(new_leaf, preformatted=True)
158 for comment_leaf in line.comments_after(leaf):
159 new_line.append(comment_leaf, preformatted=True)
160
161 yield new_line
162
163
164 class StringTransformer(ABC):
165 """
166 An implementation of the Transformer protocol that relies on its
167 subclasses overriding the template methods `do_match(...)` and
168 `do_transform(...)`.
169
170 This Transformer works exclusively on strings (for example, by merging
171 or splitting them).
172
173 The following sections can be found among the docstrings of each concrete
174 StringTransformer subclass.
175
176 Requirements:
177 Which requirements must be met of the given Line for this
178 StringTransformer to be applied?
179
180 Transformations:
181 If the given Line meets all of the above requirements, which string
182 transformations can you expect to be applied to it by this
183 StringTransformer?
184
185 Collaborations:
186 What contractual agreements does this StringTransformer have with other
187 StringTransfomers? Such collaborations should be eliminated/minimized
188 as much as possible.
189 """
190
191 __name__: Final = "StringTransformer"
192
193 # Ideally this would be a dataclass, but unfortunately mypyc breaks when used with
194 # `abc.ABC`.
195 def __init__(self, line_length: int, normalize_strings: bool) -> None:
196 self.line_length = line_length
197 self.normalize_strings = normalize_strings
198
199 @abstractmethod
200 def do_match(self, line: Line) -> TMatchResult:
201 """
202 Returns:
203 * Ok(string_indices) such that for each index, `line.leaves[index]`
204 is our target string if a match was able to be made. For
205 transformers that don't result in more lines (e.g. StringMerger,
206 StringParenStripper), multiple matches and transforms are done at
207 once to reduce the complexity.
208 OR
209 * Err(CannotTransform), if no match could be made.
210 """
211
212 @abstractmethod
213 def do_transform(
214 self, line: Line, string_indices: List[int]
215 ) -> Iterator[TResult[Line]]:
216 """
217 Yields:
218 * Ok(new_line) where new_line is the new transformed line.
219 OR
220 * Err(CannotTransform) if the transformation failed for some reason. The
221 `do_match(...)` template method should usually be used to reject
222 the form of the given Line, but in some cases it is difficult to
223 know whether or not a Line meets the StringTransformer's
224 requirements until the transformation is already midway.
225
226 Side Effects:
227 This method should NOT mutate @line directly, but it MAY mutate the
228 Line's underlying Node structure. (WARNING: If the underlying Node
229 structure IS altered, then this method should NOT be allowed to
230 yield an CannotTransform after that point.)
231 """
232
233 def __call__(
234 self, line: Line, _features: Collection[Feature], _mode: Mode
235 ) -> Iterator[Line]:
236 """
237 StringTransformer instances have a call signature that mirrors that of
238 the Transformer type.
239
240 Raises:
241 CannotTransform(...) if the concrete StringTransformer class is unable
242 to transform @line.
243 """
244 # Optimization to avoid calling `self.do_match(...)` when the line does
245 # not contain any string.
246 if not any(leaf.type == token.STRING for leaf in line.leaves):
247 raise CannotTransform("There are no strings in this line.")
248
249 match_result = self.do_match(line)
250
251 if isinstance(match_result, Err):
252 cant_transform = match_result.err()
253 raise CannotTransform(
254 f"The string transformer {self.__class__.__name__} does not recognize"
255 " this line as one that it can transform."
256 ) from cant_transform
257
258 string_indices = match_result.ok()
259
260 for line_result in self.do_transform(line, string_indices):
261 if isinstance(line_result, Err):
262 cant_transform = line_result.err()
263 raise CannotTransform(
264 "StringTransformer failed while attempting to transform string."
265 ) from cant_transform
266 line = line_result.ok()
267 yield line
268
269
270 @dataclass
271 class CustomSplit:
272 """A custom (i.e. manual) string split.
273
274 A single CustomSplit instance represents a single substring.
275
276 Examples:
277 Consider the following string:
278 ```
279 "Hi there friend."
280 " This is a custom"
281 f" string {split}."
282 ```
283
284 This string will correspond to the following three CustomSplit instances:
285 ```
286 CustomSplit(False, 16)
287 CustomSplit(False, 17)
288 CustomSplit(True, 16)
289 ```
290 """
291
292 has_prefix: bool
293 break_idx: int
294
295
296 @trait
297 class CustomSplitMapMixin:
298 """
299 This mixin class is used to map merged strings to a sequence of
300 CustomSplits, which will then be used to re-split the strings iff none of
301 the resultant substrings go over the configured max line length.
302 """
303
304 _Key: ClassVar = Tuple[StringID, str]
305 _CUSTOM_SPLIT_MAP: ClassVar[Dict[_Key, Tuple[CustomSplit, ...]]] = defaultdict(
306 tuple
307 )
308
309 @staticmethod
310 def _get_key(string: str) -> "CustomSplitMapMixin._Key":
311 """
312 Returns:
313 A unique identifier that is used internally to map @string to a
314 group of custom splits.
315 """
316 return (id(string), string)
317
318 def add_custom_splits(
319 self, string: str, custom_splits: Iterable[CustomSplit]
320 ) -> None:
321 """Custom Split Map Setter Method
322
323 Side Effects:
324 Adds a mapping from @string to the custom splits @custom_splits.
325 """
326 key = self._get_key(string)
327 self._CUSTOM_SPLIT_MAP[key] = tuple(custom_splits)
328
329 def pop_custom_splits(self, string: str) -> List[CustomSplit]:
330 """Custom Split Map Getter Method
331
332 Returns:
333 * A list of the custom splits that are mapped to @string, if any
334 exist.
335 OR
336 * [], otherwise.
337
338 Side Effects:
339 Deletes the mapping between @string and its associated custom
340 splits (which are returned to the caller).
341 """
342 key = self._get_key(string)
343
344 custom_splits = self._CUSTOM_SPLIT_MAP[key]
345 del self._CUSTOM_SPLIT_MAP[key]
346
347 return list(custom_splits)
348
349 def has_custom_splits(self, string: str) -> bool:
350 """
351 Returns:
352 True iff @string is associated with a set of custom splits.
353 """
354 key = self._get_key(string)
355 return key in self._CUSTOM_SPLIT_MAP
356
357
358 class StringMerger(StringTransformer, CustomSplitMapMixin):
359 """StringTransformer that merges strings together.
360
361 Requirements:
362 (A) The line contains adjacent strings such that ALL of the validation checks
363 listed in StringMerger._validate_msg(...)'s docstring pass.
364 OR
365 (B) The line contains a string which uses line continuation backslashes.
366
367 Transformations:
368 Depending on which of the two requirements above where met, either:
369
370 (A) The string group associated with the target string is merged.
371 OR
372 (B) All line-continuation backslashes are removed from the target string.
373
374 Collaborations:
375 StringMerger provides custom split information to StringSplitter.
376 """
377
378 def do_match(self, line: Line) -> TMatchResult:
379 LL = line.leaves
380
381 is_valid_index = is_valid_index_factory(LL)
382
383 string_indices = []
384 idx = 0
385 while is_valid_index(idx):
386 leaf = LL[idx]
387 if (
388 leaf.type == token.STRING
389 and is_valid_index(idx + 1)
390 and LL[idx + 1].type == token.STRING
391 ):
392 if not is_part_of_annotation(leaf):
393 string_indices.append(idx)
394
395 # Advance to the next non-STRING leaf.
396 idx += 2
397 while is_valid_index(idx) and LL[idx].type == token.STRING:
398 idx += 1
399
400 elif leaf.type == token.STRING and "\\\n" in leaf.value:
401 string_indices.append(idx)
402 # Advance to the next non-STRING leaf.
403 idx += 1
404 while is_valid_index(idx) and LL[idx].type == token.STRING:
405 idx += 1
406
407 else:
408 idx += 1
409
410 if string_indices:
411 return Ok(string_indices)
412 else:
413 return TErr("This line has no strings that need merging.")
414
415 def do_transform(
416 self, line: Line, string_indices: List[int]
417 ) -> Iterator[TResult[Line]]:
418 new_line = line
419
420 rblc_result = self._remove_backslash_line_continuation_chars(
421 new_line, string_indices
422 )
423 if isinstance(rblc_result, Ok):
424 new_line = rblc_result.ok()
425
426 msg_result = self._merge_string_group(new_line, string_indices)
427 if isinstance(msg_result, Ok):
428 new_line = msg_result.ok()
429
430 if isinstance(rblc_result, Err) and isinstance(msg_result, Err):
431 msg_cant_transform = msg_result.err()
432 rblc_cant_transform = rblc_result.err()
433 cant_transform = CannotTransform(
434 "StringMerger failed to merge any strings in this line."
435 )
436
437 # Chain the errors together using `__cause__`.
438 msg_cant_transform.__cause__ = rblc_cant_transform
439 cant_transform.__cause__ = msg_cant_transform
440
441 yield Err(cant_transform)
442 else:
443 yield Ok(new_line)
444
445 @staticmethod
446 def _remove_backslash_line_continuation_chars(
447 line: Line, string_indices: List[int]
448 ) -> TResult[Line]:
449 """
450 Merge strings that were split across multiple lines using
451 line-continuation backslashes.
452
453 Returns:
454 Ok(new_line), if @line contains backslash line-continuation
455 characters.
456 OR
457 Err(CannotTransform), otherwise.
458 """
459 LL = line.leaves
460
461 indices_to_transform = []
462 for string_idx in string_indices:
463 string_leaf = LL[string_idx]
464 if (
465 string_leaf.type == token.STRING
466 and "\\\n" in string_leaf.value
467 and not has_triple_quotes(string_leaf.value)
468 ):
469 indices_to_transform.append(string_idx)
470
471 if not indices_to_transform:
472 return TErr(
473 "Found no string leaves that contain backslash line continuation"
474 " characters."
475 )
476
477 new_line = line.clone()
478 new_line.comments = line.comments.copy()
479 append_leaves(new_line, line, LL)
480
481 for string_idx in indices_to_transform:
482 new_string_leaf = new_line.leaves[string_idx]
483 new_string_leaf.value = new_string_leaf.value.replace("\\\n", "")
484
485 return Ok(new_line)
486
487 def _merge_string_group(
488 self, line: Line, string_indices: List[int]
489 ) -> TResult[Line]:
490 """
491 Merges string groups (i.e. set of adjacent strings).
492
493 Each index from `string_indices` designates one string group's first
494 leaf in `line.leaves`.
495
496 Returns:
497 Ok(new_line), if ALL of the validation checks found in
498 _validate_msg(...) pass.
499 OR
500 Err(CannotTransform), otherwise.
501 """
502 LL = line.leaves
503
504 is_valid_index = is_valid_index_factory(LL)
505
506 # A dict of {string_idx: tuple[num_of_strings, string_leaf]}.
507 merged_string_idx_dict: Dict[int, Tuple[int, Leaf]] = {}
508 for string_idx in string_indices:
509 vresult = self._validate_msg(line, string_idx)
510 if isinstance(vresult, Err):
511 continue
512 merged_string_idx_dict[string_idx] = self._merge_one_string_group(
513 LL, string_idx, is_valid_index
514 )
515
516 if not merged_string_idx_dict:
517 return TErr("No string group is merged")
518
519 # Build the final line ('new_line') that this method will later return.
520 new_line = line.clone()
521 previous_merged_string_idx = -1
522 previous_merged_num_of_strings = -1
523 for i, leaf in enumerate(LL):
524 if i in merged_string_idx_dict:
525 previous_merged_string_idx = i
526 previous_merged_num_of_strings, string_leaf = merged_string_idx_dict[i]
527 new_line.append(string_leaf)
528
529 if (
530 previous_merged_string_idx
531 <= i
532 < previous_merged_string_idx + previous_merged_num_of_strings
533 ):
534 for comment_leaf in line.comments_after(LL[i]):
535 new_line.append(comment_leaf, preformatted=True)
536 continue
537
538 append_leaves(new_line, line, [leaf])
539
540 return Ok(new_line)
541
542 def _merge_one_string_group(
543 self, LL: List[Leaf], string_idx: int, is_valid_index: Callable[[int], bool]
544 ) -> Tuple[int, Leaf]:
545 """
546 Merges one string group where the first string in the group is
547 `LL[string_idx]`.
548
549 Returns:
550 A tuple of `(num_of_strings, leaf)` where `num_of_strings` is the
551 number of strings merged and `leaf` is the newly merged string
552 to be replaced in the new line.
553 """
554 # If the string group is wrapped inside an Atom node, we must make sure
555 # to later replace that Atom with our new (merged) string leaf.
556 atom_node = LL[string_idx].parent
557
558 # We will place BREAK_MARK in between every two substrings that we
559 # merge. We will then later go through our final result and use the
560 # various instances of BREAK_MARK we find to add the right values to
561 # the custom split map.
562 BREAK_MARK = "@@@@@ BLACK BREAKPOINT MARKER @@@@@"
563
564 QUOTE = LL[string_idx].value[-1]
565
566 def make_naked(string: str, string_prefix: str) -> str:
567 """Strip @string (i.e. make it a "naked" string)
568
569 Pre-conditions:
570 * assert_is_leaf_string(@string)
571
572 Returns:
573 A string that is identical to @string except that
574 @string_prefix has been stripped, the surrounding QUOTE
575 characters have been removed, and any remaining QUOTE
576 characters have been escaped.
577 """
578 assert_is_leaf_string(string)
579 if "f" in string_prefix:
580 string = _toggle_fexpr_quotes(string, QUOTE)
581 # After quotes toggling, quotes in expressions won't be escaped
582 # because quotes can't be reused in f-strings. So we can simply
583 # let the escaping logic below run without knowing f-string
584 # expressions.
585
586 RE_EVEN_BACKSLASHES = r"(?:(?<!\\)(?:\\\\)*)"
587 naked_string = string[len(string_prefix) + 1 : -1]
588 naked_string = re.sub(
589 "(" + RE_EVEN_BACKSLASHES + ")" + QUOTE, r"\1\\" + QUOTE, naked_string
590 )
591 return naked_string
592
593 # Holds the CustomSplit objects that will later be added to the custom
594 # split map.
595 custom_splits = []
596
597 # Temporary storage for the 'has_prefix' part of the CustomSplit objects.
598 prefix_tracker = []
599
600 # Sets the 'prefix' variable. This is the prefix that the final merged
601 # string will have.
602 next_str_idx = string_idx
603 prefix = ""
604 while (
605 not prefix
606 and is_valid_index(next_str_idx)
607 and LL[next_str_idx].type == token.STRING
608 ):
609 prefix = get_string_prefix(LL[next_str_idx].value).lower()
610 next_str_idx += 1
611
612 # The next loop merges the string group. The final string will be
613 # contained in 'S'.
614 #
615 # The following convenience variables are used:
616 #
617 # S: string
618 # NS: naked string
619 # SS: next string
620 # NSS: naked next string
621 S = ""
622 NS = ""
623 num_of_strings = 0
624 next_str_idx = string_idx
625 while is_valid_index(next_str_idx) and LL[next_str_idx].type == token.STRING:
626 num_of_strings += 1
627
628 SS = LL[next_str_idx].value
629 next_prefix = get_string_prefix(SS).lower()
630
631 # If this is an f-string group but this substring is not prefixed
632 # with 'f'...
633 if "f" in prefix and "f" not in next_prefix:
634 # Then we must escape any braces contained in this substring.
635 SS = re.sub(r"(\{|\})", r"\1\1", SS)
636
637 NSS = make_naked(SS, next_prefix)
638
639 has_prefix = bool(next_prefix)
640 prefix_tracker.append(has_prefix)
641
642 S = prefix + QUOTE + NS + NSS + BREAK_MARK + QUOTE
643 NS = make_naked(S, prefix)
644
645 next_str_idx += 1
646
647 # Take a note on the index of the non-STRING leaf.
648 non_string_idx = next_str_idx
649
650 S_leaf = Leaf(token.STRING, S)
651 if self.normalize_strings:
652 S_leaf.value = normalize_string_quotes(S_leaf.value)
653
654 # Fill the 'custom_splits' list with the appropriate CustomSplit objects.
655 temp_string = S_leaf.value[len(prefix) + 1 : -1]
656 for has_prefix in prefix_tracker:
657 mark_idx = temp_string.find(BREAK_MARK)
658 assert (
659 mark_idx >= 0
660 ), "Logic error while filling the custom string breakpoint cache."
661
662 temp_string = temp_string[mark_idx + len(BREAK_MARK) :]
663 breakpoint_idx = mark_idx + (len(prefix) if has_prefix else 0) + 1
664 custom_splits.append(CustomSplit(has_prefix, breakpoint_idx))
665
666 string_leaf = Leaf(token.STRING, S_leaf.value.replace(BREAK_MARK, ""))
667
668 if atom_node is not None:
669 # If not all children of the atom node are merged (this can happen
670 # when there is a standalone comment in the middle) ...
671 if non_string_idx - string_idx < len(atom_node.children):
672 # We need to replace the old STRING leaves with the new string leaf.
673 first_child_idx = LL[string_idx].remove()
674 for idx in range(string_idx + 1, non_string_idx):
675 LL[idx].remove()
676 if first_child_idx is not None:
677 atom_node.insert_child(first_child_idx, string_leaf)
678 else:
679 # Else replace the atom node with the new string leaf.
680 replace_child(atom_node, string_leaf)
681
682 self.add_custom_splits(string_leaf.value, custom_splits)
683 return num_of_strings, string_leaf
684
685 @staticmethod
686 def _validate_msg(line: Line, string_idx: int) -> TResult[None]:
687 """Validate (M)erge (S)tring (G)roup
688
689 Transform-time string validation logic for _merge_string_group(...).
690
691 Returns:
692 * Ok(None), if ALL validation checks (listed below) pass.
693 OR
694 * Err(CannotTransform), if any of the following are true:
695 - The target string group does not contain ANY stand-alone comments.
696 - The target string is not in a string group (i.e. it has no
697 adjacent strings).
698 - The string group has more than one inline comment.
699 - The string group has an inline comment that appears to be a pragma.
700 - The set of all string prefixes in the string group is of
701 length greater than one and is not equal to {"", "f"}.
702 - The string group consists of raw strings.
703 - The string group is stringified type annotations. We don't want to
704 process stringified type annotations since pyright doesn't support
705 them spanning multiple string values. (NOTE: mypy, pytype, pyre do
706 support them, so we can change if pyright also gains support in the
707 future. See https://github.com/microsoft/pyright/issues/4359.)
708 """
709 # We first check for "inner" stand-alone comments (i.e. stand-alone
710 # comments that have a string leaf before them AND after them).
711 for inc in [1, -1]:
712 i = string_idx
713 found_sa_comment = False
714 is_valid_index = is_valid_index_factory(line.leaves)
715 while is_valid_index(i) and line.leaves[i].type in [
716 token.STRING,
717 STANDALONE_COMMENT,
718 ]:
719 if line.leaves[i].type == STANDALONE_COMMENT:
720 found_sa_comment = True
721 elif found_sa_comment:
722 return TErr(
723 "StringMerger does NOT merge string groups which contain "
724 "stand-alone comments."
725 )
726
727 i += inc
728
729 num_of_inline_string_comments = 0
730 set_of_prefixes = set()
731 num_of_strings = 0
732 for leaf in line.leaves[string_idx:]:
733 if leaf.type != token.STRING:
734 # If the string group is trailed by a comma, we count the
735 # comments trailing the comma to be one of the string group's
736 # comments.
737 if leaf.type == token.COMMA and id(leaf) in line.comments:
738 num_of_inline_string_comments += 1
739 break
740
741 if has_triple_quotes(leaf.value):
742 return TErr("StringMerger does NOT merge multiline strings.")
743
744 num_of_strings += 1
745 prefix = get_string_prefix(leaf.value).lower()
746 if "r" in prefix:
747 return TErr("StringMerger does NOT merge raw strings.")
748
749 set_of_prefixes.add(prefix)
750
751 if id(leaf) in line.comments:
752 num_of_inline_string_comments += 1
753 if contains_pragma_comment(line.comments[id(leaf)]):
754 return TErr("Cannot merge strings which have pragma comments.")
755
756 if num_of_strings < 2:
757 return TErr(
758 f"Not enough strings to merge (num_of_strings={num_of_strings})."
759 )
760
761 if num_of_inline_string_comments > 1:
762 return TErr(
763 f"Too many inline string comments ({num_of_inline_string_comments})."
764 )
765
766 if len(set_of_prefixes) > 1 and set_of_prefixes != {"", "f"}:
767 return TErr(f"Too many different prefixes ({set_of_prefixes}).")
768
769 return Ok(None)
770
771
772 class StringParenStripper(StringTransformer):
773 """StringTransformer that strips surrounding parentheses from strings.
774
775 Requirements:
776 The line contains a string which is surrounded by parentheses and:
777 - The target string is NOT the only argument to a function call.
778 - The target string is NOT a "pointless" string.
779 - If the target string contains a PERCENT, the brackets are not
780 preceded or followed by an operator with higher precedence than
781 PERCENT.
782
783 Transformations:
784 The parentheses mentioned in the 'Requirements' section are stripped.
785
786 Collaborations:
787 StringParenStripper has its own inherent usefulness, but it is also
788 relied on to clean up the parentheses created by StringParenWrapper (in
789 the event that they are no longer needed).
790 """
791
792 def do_match(self, line: Line) -> TMatchResult:
793 LL = line.leaves
794
795 is_valid_index = is_valid_index_factory(LL)
796
797 string_indices = []
798
799 idx = -1
800 while True:
801 idx += 1
802 if idx >= len(LL):
803 break
804 leaf = LL[idx]
805
806 # Should be a string...
807 if leaf.type != token.STRING:
808 continue
809
810 # If this is a "pointless" string...
811 if (
812 leaf.parent
813 and leaf.parent.parent
814 and leaf.parent.parent.type == syms.simple_stmt
815 ):
816 continue
817
818 # Should be preceded by a non-empty LPAR...
819 if (
820 not is_valid_index(idx - 1)
821 or LL[idx - 1].type != token.LPAR
822 or is_empty_lpar(LL[idx - 1])
823 ):
824 continue
825
826 # That LPAR should NOT be preceded by a function name or a closing
827 # bracket (which could be a function which returns a function or a
828 # list/dictionary that contains a function)...
829 if is_valid_index(idx - 2) and (
830 LL[idx - 2].type == token.NAME or LL[idx - 2].type in CLOSING_BRACKETS
831 ):
832 continue
833
834 string_idx = idx
835
836 # Skip the string trailer, if one exists.
837 string_parser = StringParser()
838 next_idx = string_parser.parse(LL, string_idx)
839
840 # if the leaves in the parsed string include a PERCENT, we need to
841 # make sure the initial LPAR is NOT preceded by an operator with
842 # higher or equal precedence to PERCENT
843 if is_valid_index(idx - 2):
844 # mypy can't quite follow unless we name this
845 before_lpar = LL[idx - 2]
846 if token.PERCENT in {leaf.type for leaf in LL[idx - 1 : next_idx]} and (
847 (
848 before_lpar.type
849 in {
850 token.STAR,
851 token.AT,
852 token.SLASH,
853 token.DOUBLESLASH,
854 token.PERCENT,
855 token.TILDE,
856 token.DOUBLESTAR,
857 token.AWAIT,
858 token.LSQB,
859 token.LPAR,
860 }
861 )
862 or (
863 # only unary PLUS/MINUS
864 before_lpar.parent
865 and before_lpar.parent.type == syms.factor
866 and (before_lpar.type in {token.PLUS, token.MINUS})
867 )
868 ):
869 continue
870
871 # Should be followed by a non-empty RPAR...
872 if (
873 is_valid_index(next_idx)
874 and LL[next_idx].type == token.RPAR
875 and not is_empty_rpar(LL[next_idx])
876 ):
877 # That RPAR should NOT be followed by anything with higher
878 # precedence than PERCENT
879 if is_valid_index(next_idx + 1) and LL[next_idx + 1].type in {
880 token.DOUBLESTAR,
881 token.LSQB,
882 token.LPAR,
883 token.DOT,
884 }:
885 continue
886
887 string_indices.append(string_idx)
888 idx = string_idx
889 while idx < len(LL) - 1 and LL[idx + 1].type == token.STRING:
890 idx += 1
891
892 if string_indices:
893 return Ok(string_indices)
894 return TErr("This line has no strings wrapped in parens.")
895
896 def do_transform(
897 self, line: Line, string_indices: List[int]
898 ) -> Iterator[TResult[Line]]:
899 LL = line.leaves
900
901 string_and_rpar_indices: List[int] = []
902 for string_idx in string_indices:
903 string_parser = StringParser()
904 rpar_idx = string_parser.parse(LL, string_idx)
905
906 should_transform = True
907 for leaf in (LL[string_idx - 1], LL[rpar_idx]):
908 if line.comments_after(leaf):
909 # Should not strip parentheses which have comments attached
910 # to them.
911 should_transform = False
912 break
913 if should_transform:
914 string_and_rpar_indices.extend((string_idx, rpar_idx))
915
916 if string_and_rpar_indices:
917 yield Ok(self._transform_to_new_line(line, string_and_rpar_indices))
918 else:
919 yield Err(
920 CannotTransform("All string groups have comments attached to them.")
921 )
922
923 def _transform_to_new_line(
924 self, line: Line, string_and_rpar_indices: List[int]
925 ) -> Line:
926 LL = line.leaves
927
928 new_line = line.clone()
929 new_line.comments = line.comments.copy()
930
931 previous_idx = -1
932 # We need to sort the indices, since string_idx and its matching
933 # rpar_idx may not come in order, e.g. in
934 # `("outer" % ("inner".join(items)))`, the "inner" string's
935 # string_idx is smaller than "outer" string's rpar_idx.
936 for idx in sorted(string_and_rpar_indices):
937 leaf = LL[idx]
938 lpar_or_rpar_idx = idx - 1 if leaf.type == token.STRING else idx
939 append_leaves(new_line, line, LL[previous_idx + 1 : lpar_or_rpar_idx])
940 if leaf.type == token.STRING:
941 string_leaf = Leaf(token.STRING, LL[idx].value)
942 LL[lpar_or_rpar_idx].remove() # Remove lpar.
943 replace_child(LL[idx], string_leaf)
944 new_line.append(string_leaf)
945 else:
946 LL[lpar_or_rpar_idx].remove() # This is a rpar.
947
948 previous_idx = idx
949
950 # Append the leaves after the last idx:
951 append_leaves(new_line, line, LL[idx + 1 :])
952
953 return new_line
954
955
956 class BaseStringSplitter(StringTransformer):
957 """
958 Abstract class for StringTransformers which transform a Line's strings by splitting
959 them or placing them on their own lines where necessary to avoid going over
960 the configured line length.
961
962 Requirements:
963 * The target string value is responsible for the line going over the
964 line length limit. It follows that after all of black's other line
965 split methods have been exhausted, this line (or one of the resulting
966 lines after all line splits are performed) would still be over the
967 line_length limit unless we split this string.
968 AND
969
970 * The target string is NOT a "pointless" string (i.e. a string that has
971 no parent or siblings).
972 AND
973
974 * The target string is not followed by an inline comment that appears
975 to be a pragma.
976 AND
977
978 * The target string is not a multiline (i.e. triple-quote) string.
979 """
980
981 STRING_OPERATORS: Final = [
982 token.EQEQUAL,
983 token.GREATER,
984 token.GREATEREQUAL,
985 token.LESS,
986 token.LESSEQUAL,
987 token.NOTEQUAL,
988 token.PERCENT,
989 token.PLUS,
990 token.STAR,
991 ]
992
993 @abstractmethod
994 def do_splitter_match(self, line: Line) -> TMatchResult:
995 """
996 BaseStringSplitter asks its clients to override this method instead of
997 `StringTransformer.do_match(...)`.
998
999 Follows the same protocol as `StringTransformer.do_match(...)`.
1000
1001 Refer to `help(StringTransformer.do_match)` for more information.
1002 """
1003
1004 def do_match(self, line: Line) -> TMatchResult:
1005 match_result = self.do_splitter_match(line)
1006 if isinstance(match_result, Err):
1007 return match_result
1008
1009 string_indices = match_result.ok()
1010 assert len(string_indices) == 1, (
1011 f"{self.__class__.__name__} should only find one match at a time, found"
1012 f" {len(string_indices)}"
1013 )
1014 string_idx = string_indices[0]
1015 vresult = self._validate(line, string_idx)
1016 if isinstance(vresult, Err):
1017 return vresult
1018
1019 return match_result
1020
1021 def _validate(self, line: Line, string_idx: int) -> TResult[None]:
1022 """
1023 Checks that @line meets all of the requirements listed in this classes'
1024 docstring. Refer to `help(BaseStringSplitter)` for a detailed
1025 description of those requirements.
1026
1027 Returns:
1028 * Ok(None), if ALL of the requirements are met.
1029 OR
1030 * Err(CannotTransform), if ANY of the requirements are NOT met.
1031 """
1032 LL = line.leaves
1033
1034 string_leaf = LL[string_idx]
1035
1036 max_string_length = self._get_max_string_length(line, string_idx)
1037 if len(string_leaf.value) <= max_string_length:
1038 return TErr(
1039 "The string itself is not what is causing this line to be too long."
1040 )
1041
1042 if not string_leaf.parent or [L.type for L in string_leaf.parent.children] == [
1043 token.STRING,
1044 token.NEWLINE,
1045 ]:
1046 return TErr(
1047 f"This string ({string_leaf.value}) appears to be pointless (i.e. has"
1048 " no parent)."
1049 )
1050
1051 if id(line.leaves[string_idx]) in line.comments and contains_pragma_comment(
1052 line.comments[id(line.leaves[string_idx])]
1053 ):
1054 return TErr(
1055 "Line appears to end with an inline pragma comment. Splitting the line"
1056 " could modify the pragma's behavior."
1057 )
1058
1059 if has_triple_quotes(string_leaf.value):
1060 return TErr("We cannot split multiline strings.")
1061
1062 return Ok(None)
1063
1064 def _get_max_string_length(self, line: Line, string_idx: int) -> int:
1065 """
1066 Calculates the max string length used when attempting to determine
1067 whether or not the target string is responsible for causing the line to
1068 go over the line length limit.
1069
1070 WARNING: This method is tightly coupled to both StringSplitter and
1071 (especially) StringParenWrapper. There is probably a better way to
1072 accomplish what is being done here.
1073
1074 Returns:
1075 max_string_length: such that `line.leaves[string_idx].value >
1076 max_string_length` implies that the target string IS responsible
1077 for causing this line to exceed the line length limit.
1078 """
1079 LL = line.leaves
1080
1081 is_valid_index = is_valid_index_factory(LL)
1082
1083 # We use the shorthand "WMA4" in comments to abbreviate "We must
1084 # account for". When giving examples, we use STRING to mean some/any
1085 # valid string.
1086 #
1087 # Finally, we use the following convenience variables:
1088 #
1089 # P: The leaf that is before the target string leaf.
1090 # N: The leaf that is after the target string leaf.
1091 # NN: The leaf that is after N.
1092
1093 # WMA4 the whitespace at the beginning of the line.
1094 offset = line.depth * 4
1095
1096 if is_valid_index(string_idx - 1):
1097 p_idx = string_idx - 1
1098 if (
1099 LL[string_idx - 1].type == token.LPAR
1100 and LL[string_idx - 1].value == ""
1101 and string_idx >= 2
1102 ):
1103 # If the previous leaf is an empty LPAR placeholder, we should skip it.
1104 p_idx -= 1
1105
1106 P = LL[p_idx]
1107 if P.type in self.STRING_OPERATORS:
1108 # WMA4 a space and a string operator (e.g. `+ STRING` or `== STRING`).
1109 offset += len(str(P)) + 1
1110
1111 if P.type == token.COMMA:
1112 # WMA4 a space, a comma, and a closing bracket [e.g. `), STRING`].
1113 offset += 3
1114
1115 if P.type in [token.COLON, token.EQUAL, token.PLUSEQUAL, token.NAME]:
1116 # This conditional branch is meant to handle dictionary keys,
1117 # variable assignments, 'return STRING' statement lines, and
1118 # 'else STRING' ternary expression lines.
1119
1120 # WMA4 a single space.
1121 offset += 1
1122
1123 # WMA4 the lengths of any leaves that came before that space,
1124 # but after any closing bracket before that space.
1125 for leaf in reversed(LL[: p_idx + 1]):
1126 offset += len(str(leaf))
1127 if leaf.type in CLOSING_BRACKETS:
1128 break
1129
1130 if is_valid_index(string_idx + 1):
1131 N = LL[string_idx + 1]
1132 if N.type == token.RPAR and N.value == "" and len(LL) > string_idx + 2:
1133 # If the next leaf is an empty RPAR placeholder, we should skip it.
1134 N = LL[string_idx + 2]
1135
1136 if N.type == token.COMMA:
1137 # WMA4 a single comma at the end of the string (e.g `STRING,`).
1138 offset += 1
1139
1140 if is_valid_index(string_idx + 2):
1141 NN = LL[string_idx + 2]
1142
1143 if N.type == token.DOT and NN.type == token.NAME:
1144 # This conditional branch is meant to handle method calls invoked
1145 # off of a string literal up to and including the LPAR character.
1146
1147 # WMA4 the '.' character.
1148 offset += 1
1149
1150 if (
1151 is_valid_index(string_idx + 3)
1152 and LL[string_idx + 3].type == token.LPAR
1153 ):
1154 # WMA4 the left parenthesis character.
1155 offset += 1
1156
1157 # WMA4 the length of the method's name.
1158 offset += len(NN.value)
1159
1160 has_comments = False
1161 for comment_leaf in line.comments_after(LL[string_idx]):
1162 if not has_comments:
1163 has_comments = True
1164 # WMA4 two spaces before the '#' character.
1165 offset += 2
1166
1167 # WMA4 the length of the inline comment.
1168 offset += len(comment_leaf.value)
1169
1170 max_string_length = count_chars_in_width(str(line), self.line_length - offset)
1171 return max_string_length
1172
1173 @staticmethod
1174 def _prefer_paren_wrap_match(LL: List[Leaf]) -> Optional[int]:
1175 """
1176 Returns:
1177 string_idx such that @LL[string_idx] is equal to our target (i.e.
1178 matched) string, if this line matches the "prefer paren wrap" statement
1179 requirements listed in the 'Requirements' section of the StringParenWrapper
1180 class's docstring.
1181 OR
1182 None, otherwise.
1183 """
1184 # The line must start with a string.
1185 if LL[0].type != token.STRING:
1186 return None
1187
1188 matching_nodes = [
1189 syms.listmaker,
1190 syms.dictsetmaker,
1191 syms.testlist_gexp,
1192 ]
1193 # If the string is an immediate child of a list/set/tuple literal...
1194 if (
1195 parent_type(LL[0]) in matching_nodes
1196 or parent_type(LL[0].parent) in matching_nodes
1197 ):
1198 # And the string is surrounded by commas (or is the first/last child)...
1199 prev_sibling = LL[0].prev_sibling
1200 next_sibling = LL[0].next_sibling
1201 if (
1202 not prev_sibling
1203 and not next_sibling
1204 and parent_type(LL[0]) == syms.atom
1205 ):
1206 # If it's an atom string, we need to check the parent atom's siblings.
1207 parent = LL[0].parent
1208 assert parent is not None # For type checkers.
1209 prev_sibling = parent.prev_sibling
1210 next_sibling = parent.next_sibling
1211 if (not prev_sibling or prev_sibling.type == token.COMMA) and (
1212 not next_sibling or next_sibling.type == token.COMMA
1213 ):
1214 return 0
1215
1216 return None
1217
1218
1219 def iter_fexpr_spans(s: str) -> Iterator[Tuple[int, int]]:
1220 """
1221 Yields spans corresponding to expressions in a given f-string.
1222 Spans are half-open ranges (left inclusive, right exclusive).
1223 Assumes the input string is a valid f-string, but will not crash if the input
1224 string is invalid.
1225 """
1226 stack: List[int] = [] # our curly paren stack
1227 i = 0
1228 while i < len(s):
1229 if s[i] == "{":
1230 # if we're in a string part of the f-string, ignore escaped curly braces
1231 if not stack and i + 1 < len(s) and s[i + 1] == "{":
1232 i += 2
1233 continue
1234 stack.append(i)
1235 i += 1
1236 continue
1237
1238 if s[i] == "}":
1239 if not stack:
1240 i += 1
1241 continue
1242 j = stack.pop()
1243 # we've made it back out of the expression! yield the span
1244 if not stack:
1245 yield (j, i + 1)
1246 i += 1
1247 continue
1248
1249 # if we're in an expression part of the f-string, fast forward through strings
1250 # note that backslashes are not legal in the expression portion of f-strings
1251 if stack:
1252 delim = None
1253 if s[i : i + 3] in ("'''", '"""'):
1254 delim = s[i : i + 3]
1255 elif s[i] in ("'", '"'):
1256 delim = s[i]
1257 if delim:
1258 i += len(delim)
1259 while i < len(s) and s[i : i + len(delim)] != delim:
1260 i += 1
1261 i += len(delim)
1262 continue
1263 i += 1
1264
1265
1266 def fstring_contains_expr(s: str) -> bool:
1267 return any(iter_fexpr_spans(s))
1268
1269
1270 def _toggle_fexpr_quotes(fstring: str, old_quote: str) -> str:
1271 """
1272 Toggles quotes used in f-string expressions that are `old_quote`.
1273
1274 f-string expressions can't contain backslashes, so we need to toggle the
1275 quotes if the f-string itself will end up using the same quote. We can
1276 simply toggle without escaping because, quotes can't be reused in f-string
1277 expressions. They will fail to parse.
1278
1279 NOTE: If PEP 701 is accepted, above statement will no longer be true.
1280 Though if quotes can be reused, we can simply reuse them without updates or
1281 escaping, once Black figures out how to parse the new grammar.
1282 """
1283 new_quote = "'" if old_quote == '"' else '"'
1284 parts = []
1285 previous_index = 0
1286 for start, end in iter_fexpr_spans(fstring):
1287 parts.append(fstring[previous_index:start])
1288 parts.append(fstring[start:end].replace(old_quote, new_quote))
1289 previous_index = end
1290 parts.append(fstring[previous_index:])
1291 return "".join(parts)
1292
1293
1294 class StringSplitter(BaseStringSplitter, CustomSplitMapMixin):
1295 """
1296 StringTransformer that splits "atom" strings (i.e. strings which exist on
1297 lines by themselves).
1298
1299 Requirements:
1300 * The line consists ONLY of a single string (possibly prefixed by a
1301 string operator [e.g. '+' or '==']), MAYBE a string trailer, and MAYBE
1302 a trailing comma.
1303 AND
1304 * All of the requirements listed in BaseStringSplitter's docstring.
1305
1306 Transformations:
1307 The string mentioned in the 'Requirements' section is split into as
1308 many substrings as necessary to adhere to the configured line length.
1309
1310 In the final set of substrings, no substring should be smaller than
1311 MIN_SUBSTR_SIZE characters.
1312
1313 The string will ONLY be split on spaces (i.e. each new substring should
1314 start with a space). Note that the string will NOT be split on a space
1315 which is escaped with a backslash.
1316
1317 If the string is an f-string, it will NOT be split in the middle of an
1318 f-expression (e.g. in f"FooBar: {foo() if x else bar()}", {foo() if x
1319 else bar()} is an f-expression).
1320
1321 If the string that is being split has an associated set of custom split
1322 records and those custom splits will NOT result in any line going over
1323 the configured line length, those custom splits are used. Otherwise the
1324 string is split as late as possible (from left-to-right) while still
1325 adhering to the transformation rules listed above.
1326
1327 Collaborations:
1328 StringSplitter relies on StringMerger to construct the appropriate
1329 CustomSplit objects and add them to the custom split map.
1330 """
1331
1332 MIN_SUBSTR_SIZE: Final = 6
1333
1334 def do_splitter_match(self, line: Line) -> TMatchResult:
1335 LL = line.leaves
1336
1337 if self._prefer_paren_wrap_match(LL) is not None:
1338 return TErr("Line needs to be wrapped in parens first.")
1339
1340 is_valid_index = is_valid_index_factory(LL)
1341
1342 idx = 0
1343
1344 # The first two leaves MAY be the 'not in' keywords...
1345 if (
1346 is_valid_index(idx)
1347 and is_valid_index(idx + 1)
1348 and [LL[idx].type, LL[idx + 1].type] == [token.NAME, token.NAME]
1349 and str(LL[idx]) + str(LL[idx + 1]) == "not in"
1350 ):
1351 idx += 2
1352 # Else the first leaf MAY be a string operator symbol or the 'in' keyword...
1353 elif is_valid_index(idx) and (
1354 LL[idx].type in self.STRING_OPERATORS
1355 or LL[idx].type == token.NAME
1356 and str(LL[idx]) == "in"
1357 ):
1358 idx += 1
1359
1360 # The next/first leaf MAY be an empty LPAR...
1361 if is_valid_index(idx) and is_empty_lpar(LL[idx]):
1362 idx += 1
1363
1364 # The next/first leaf MUST be a string...
1365 if not is_valid_index(idx) or LL[idx].type != token.STRING:
1366 return TErr("Line does not start with a string.")
1367
1368 string_idx = idx
1369
1370 # Skip the string trailer, if one exists.
1371 string_parser = StringParser()
1372 idx = string_parser.parse(LL, string_idx)
1373
1374 # That string MAY be followed by an empty RPAR...
1375 if is_valid_index(idx) and is_empty_rpar(LL[idx]):
1376 idx += 1
1377
1378 # That string / empty RPAR leaf MAY be followed by a comma...
1379 if is_valid_index(idx) and LL[idx].type == token.COMMA:
1380 idx += 1
1381
1382 # But no more leaves are allowed...
1383 if is_valid_index(idx):
1384 return TErr("This line does not end with a string.")
1385
1386 return Ok([string_idx])
1387
1388 def do_transform(
1389 self, line: Line, string_indices: List[int]
1390 ) -> Iterator[TResult[Line]]:
1391 LL = line.leaves
1392 assert len(string_indices) == 1, (
1393 f"{self.__class__.__name__} should only find one match at a time, found"
1394 f" {len(string_indices)}"
1395 )
1396 string_idx = string_indices[0]
1397
1398 QUOTE = LL[string_idx].value[-1]
1399
1400 is_valid_index = is_valid_index_factory(LL)
1401 insert_str_child = insert_str_child_factory(LL[string_idx])
1402
1403 prefix = get_string_prefix(LL[string_idx].value).lower()
1404
1405 # We MAY choose to drop the 'f' prefix from substrings that don't
1406 # contain any f-expressions, but ONLY if the original f-string
1407 # contains at least one f-expression. Otherwise, we will alter the AST
1408 # of the program.
1409 drop_pointless_f_prefix = ("f" in prefix) and fstring_contains_expr(
1410 LL[string_idx].value
1411 )
1412
1413 first_string_line = True
1414
1415 string_op_leaves = self._get_string_operator_leaves(LL)
1416 string_op_leaves_length = (
1417 sum(len(str(prefix_leaf)) for prefix_leaf in string_op_leaves) + 1
1418 if string_op_leaves
1419 else 0
1420 )
1421
1422 def maybe_append_string_operators(new_line: Line) -> None:
1423 """
1424 Side Effects:
1425 If @line starts with a string operator and this is the first
1426 line we are constructing, this function appends the string
1427 operator to @new_line and replaces the old string operator leaf
1428 in the node structure. Otherwise this function does nothing.
1429 """
1430 maybe_prefix_leaves = string_op_leaves if first_string_line else []
1431 for i, prefix_leaf in enumerate(maybe_prefix_leaves):
1432 replace_child(LL[i], prefix_leaf)
1433 new_line.append(prefix_leaf)
1434
1435 ends_with_comma = (
1436 is_valid_index(string_idx + 1) and LL[string_idx + 1].type == token.COMMA
1437 )
1438
1439 def max_last_string_column() -> int:
1440 """
1441 Returns:
1442 The max allowed width of the string value used for the last
1443 line we will construct. Note that this value means the width
1444 rather than the number of characters (e.g., many East Asian
1445 characters expand to two columns).
1446 """
1447 result = self.line_length
1448 result -= line.depth * 4
1449 result -= 1 if ends_with_comma else 0
1450 result -= string_op_leaves_length
1451 return result
1452
1453 # --- Calculate Max Break Width (for string value)
1454 # We start with the line length limit
1455 max_break_width = self.line_length
1456 # The last index of a string of length N is N-1.
1457 max_break_width -= 1
1458 # Leading whitespace is not present in the string value (e.g. Leaf.value).
1459 max_break_width -= line.depth * 4
1460 if max_break_width < 0:
1461 yield TErr(
1462 f"Unable to split {LL[string_idx].value} at such high of a line depth:"
1463 f" {line.depth}"
1464 )
1465 return
1466
1467 # Check if StringMerger registered any custom splits.
1468 custom_splits = self.pop_custom_splits(LL[string_idx].value)
1469 # We use them ONLY if none of them would produce lines that exceed the
1470 # line limit.
1471 use_custom_breakpoints = bool(
1472 custom_splits
1473 and all(csplit.break_idx <= max_break_width for csplit in custom_splits)
1474 )
1475
1476 # Temporary storage for the remaining chunk of the string line that
1477 # can't fit onto the line currently being constructed.
1478 rest_value = LL[string_idx].value
1479
1480 def more_splits_should_be_made() -> bool:
1481 """
1482 Returns:
1483 True iff `rest_value` (the remaining string value from the last
1484 split), should be split again.
1485 """
1486 if use_custom_breakpoints:
1487 return len(custom_splits) > 1
1488 else:
1489 return str_width(rest_value) > max_last_string_column()
1490
1491 string_line_results: List[Ok[Line]] = []
1492 while more_splits_should_be_made():
1493 if use_custom_breakpoints:
1494 # Custom User Split (manual)
1495 csplit = custom_splits.pop(0)
1496 break_idx = csplit.break_idx
1497 else:
1498 # Algorithmic Split (automatic)
1499 max_bidx = (
1500 count_chars_in_width(rest_value, max_break_width)
1501 - string_op_leaves_length
1502 )
1503 maybe_break_idx = self._get_break_idx(rest_value, max_bidx)
1504 if maybe_break_idx is None:
1505 # If we are unable to algorithmically determine a good split
1506 # and this string has custom splits registered to it, we
1507 # fall back to using them--which means we have to start
1508 # over from the beginning.
1509 if custom_splits:
1510 rest_value = LL[string_idx].value
1511 string_line_results = []
1512 first_string_line = True
1513 use_custom_breakpoints = True
1514 continue
1515
1516 # Otherwise, we stop splitting here.
1517 break
1518
1519 break_idx = maybe_break_idx
1520
1521 # --- Construct `next_value`
1522 next_value = rest_value[:break_idx] + QUOTE
1523
1524 # HACK: The following 'if' statement is a hack to fix the custom
1525 # breakpoint index in the case of either: (a) substrings that were
1526 # f-strings but will have the 'f' prefix removed OR (b) substrings
1527 # that were not f-strings but will now become f-strings because of
1528 # redundant use of the 'f' prefix (i.e. none of the substrings
1529 # contain f-expressions but one or more of them had the 'f' prefix
1530 # anyway; in which case, we will prepend 'f' to _all_ substrings).
1531 #
1532 # There is probably a better way to accomplish what is being done
1533 # here...
1534 #
1535 # If this substring is an f-string, we _could_ remove the 'f'
1536 # prefix, and the current custom split did NOT originally use a
1537 # prefix...
1538 if (
1539 use_custom_breakpoints
1540 and not csplit.has_prefix
1541 and (
1542 # `next_value == prefix + QUOTE` happens when the custom
1543 # split is an empty string.
1544 next_value == prefix + QUOTE
1545 or next_value != self._normalize_f_string(next_value, prefix)
1546 )
1547 ):
1548 # Then `csplit.break_idx` will be off by one after removing
1549 # the 'f' prefix.
1550 break_idx += 1
1551 next_value = rest_value[:break_idx] + QUOTE
1552
1553 if drop_pointless_f_prefix:
1554 next_value = self._normalize_f_string(next_value, prefix)
1555
1556 # --- Construct `next_leaf`
1557 next_leaf = Leaf(token.STRING, next_value)
1558 insert_str_child(next_leaf)
1559 self._maybe_normalize_string_quotes(next_leaf)
1560
1561 # --- Construct `next_line`
1562 next_line = line.clone()
1563 maybe_append_string_operators(next_line)
1564 next_line.append(next_leaf)
1565 string_line_results.append(Ok(next_line))
1566
1567 rest_value = prefix + QUOTE + rest_value[break_idx:]
1568 first_string_line = False
1569
1570 yield from string_line_results
1571
1572 if drop_pointless_f_prefix:
1573 rest_value = self._normalize_f_string(rest_value, prefix)
1574
1575 rest_leaf = Leaf(token.STRING, rest_value)
1576 insert_str_child(rest_leaf)
1577
1578 # NOTE: I could not find a test case that verifies that the following
1579 # line is actually necessary, but it seems to be. Otherwise we risk
1580 # not normalizing the last substring, right?
1581 self._maybe_normalize_string_quotes(rest_leaf)
1582
1583 last_line = line.clone()
1584 maybe_append_string_operators(last_line)
1585
1586 # If there are any leaves to the right of the target string...
1587 if is_valid_index(string_idx + 1):
1588 # We use `temp_value` here to determine how long the last line
1589 # would be if we were to append all the leaves to the right of the
1590 # target string to the last string line.
1591 temp_value = rest_value
1592 for leaf in LL[string_idx + 1 :]:
1593 temp_value += str(leaf)
1594 if leaf.type == token.LPAR:
1595 break
1596
1597 # Try to fit them all on the same line with the last substring...
1598 if (
1599 str_width(temp_value) <= max_last_string_column()
1600 or LL[string_idx + 1].type == token.COMMA
1601 ):
1602 last_line.append(rest_leaf)
1603 append_leaves(last_line, line, LL[string_idx + 1 :])
1604 yield Ok(last_line)
1605 # Otherwise, place the last substring on one line and everything
1606 # else on a line below that...
1607 else:
1608 last_line.append(rest_leaf)
1609 yield Ok(last_line)
1610
1611 non_string_line = line.clone()
1612 append_leaves(non_string_line, line, LL[string_idx + 1 :])
1613 yield Ok(non_string_line)
1614 # Else the target string was the last leaf...
1615 else:
1616 last_line.append(rest_leaf)
1617 last_line.comments = line.comments.copy()
1618 yield Ok(last_line)
1619
1620 def _iter_nameescape_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1621 """
1622 Yields:
1623 All ranges of @string which, if @string were to be split there,
1624 would result in the splitting of an \\N{...} expression (which is NOT
1625 allowed).
1626 """
1627 # True - the previous backslash was unescaped
1628 # False - the previous backslash was escaped *or* there was no backslash
1629 previous_was_unescaped_backslash = False
1630 it = iter(enumerate(string))
1631 for idx, c in it:
1632 if c == "\\":
1633 previous_was_unescaped_backslash = not previous_was_unescaped_backslash
1634 continue
1635 if not previous_was_unescaped_backslash or c != "N":
1636 previous_was_unescaped_backslash = False
1637 continue
1638 previous_was_unescaped_backslash = False
1639
1640 begin = idx - 1 # the position of backslash before \N{...}
1641 for idx, c in it:
1642 if c == "}":
1643 end = idx
1644 break
1645 else:
1646 # malformed nameescape expression?
1647 # should have been detected by AST parsing earlier...
1648 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
1649 yield begin, end
1650
1651 def _iter_fexpr_slices(self, string: str) -> Iterator[Tuple[Index, Index]]:
1652 """
1653 Yields:
1654 All ranges of @string which, if @string were to be split there,
1655 would result in the splitting of an f-expression (which is NOT
1656 allowed).
1657 """
1658 if "f" not in get_string_prefix(string).lower():
1659 return
1660 yield from iter_fexpr_spans(string)
1661
1662 def _get_illegal_split_indices(self, string: str) -> Set[Index]:
1663 illegal_indices: Set[Index] = set()
1664 iterators = [
1665 self._iter_fexpr_slices(string),
1666 self._iter_nameescape_slices(string),
1667 ]
1668 for it in iterators:
1669 for begin, end in it:
1670 illegal_indices.update(range(begin, end + 1))
1671 return illegal_indices
1672
1673 def _get_break_idx(self, string: str, max_break_idx: int) -> Optional[int]:
1674 """
1675 This method contains the algorithm that StringSplitter uses to
1676 determine which character to split each string at.
1677
1678 Args:
1679 @string: The substring that we are attempting to split.
1680 @max_break_idx: The ideal break index. We will return this value if it
1681 meets all the necessary conditions. In the likely event that it
1682 doesn't we will try to find the closest index BELOW @max_break_idx
1683 that does. If that fails, we will expand our search by also
1684 considering all valid indices ABOVE @max_break_idx.
1685
1686 Pre-Conditions:
1687 * assert_is_leaf_string(@string)
1688 * 0 <= @max_break_idx < len(@string)
1689
1690 Returns:
1691 break_idx, if an index is able to be found that meets all of the
1692 conditions listed in the 'Transformations' section of this classes'
1693 docstring.
1694 OR
1695 None, otherwise.
1696 """
1697 is_valid_index = is_valid_index_factory(string)
1698
1699 assert is_valid_index(max_break_idx)
1700 assert_is_leaf_string(string)
1701
1702 _illegal_split_indices = self._get_illegal_split_indices(string)
1703
1704 def breaks_unsplittable_expression(i: Index) -> bool:
1705 """
1706 Returns:
1707 True iff returning @i would result in the splitting of an
1708 unsplittable expression (which is NOT allowed).
1709 """
1710 return i in _illegal_split_indices
1711
1712 def passes_all_checks(i: Index) -> bool:
1713 """
1714 Returns:
1715 True iff ALL of the conditions listed in the 'Transformations'
1716 section of this classes' docstring would be be met by returning @i.
1717 """
1718 is_space = string[i] == " "
1719 is_split_safe = is_valid_index(i - 1) and string[i - 1] in SPLIT_SAFE_CHARS
1720
1721 is_not_escaped = True
1722 j = i - 1
1723 while is_valid_index(j) and string[j] == "\\":
1724 is_not_escaped = not is_not_escaped
1725 j -= 1
1726
1727 is_big_enough = (
1728 len(string[i:]) >= self.MIN_SUBSTR_SIZE
1729 and len(string[:i]) >= self.MIN_SUBSTR_SIZE
1730 )
1731 return (
1732 (is_space or is_split_safe)
1733 and is_not_escaped
1734 and is_big_enough
1735 and not breaks_unsplittable_expression(i)
1736 )
1737
1738 # First, we check all indices BELOW @max_break_idx.
1739 break_idx = max_break_idx
1740 while is_valid_index(break_idx - 1) and not passes_all_checks(break_idx):
1741 break_idx -= 1
1742
1743 if not passes_all_checks(break_idx):
1744 # If that fails, we check all indices ABOVE @max_break_idx.
1745 #
1746 # If we are able to find a valid index here, the next line is going
1747 # to be longer than the specified line length, but it's probably
1748 # better than doing nothing at all.
1749 break_idx = max_break_idx + 1
1750 while is_valid_index(break_idx + 1) and not passes_all_checks(break_idx):
1751 break_idx += 1
1752
1753 if not is_valid_index(break_idx) or not passes_all_checks(break_idx):
1754 return None
1755
1756 return break_idx
1757
1758 def _maybe_normalize_string_quotes(self, leaf: Leaf) -> None:
1759 if self.normalize_strings:
1760 leaf.value = normalize_string_quotes(leaf.value)
1761
1762 def _normalize_f_string(self, string: str, prefix: str) -> str:
1763 """
1764 Pre-Conditions:
1765 * assert_is_leaf_string(@string)
1766
1767 Returns:
1768 * If @string is an f-string that contains no f-expressions, we
1769 return a string identical to @string except that the 'f' prefix
1770 has been stripped and all double braces (i.e. '{{' or '}}') have
1771 been normalized (i.e. turned into '{' or '}').
1772 OR
1773 * Otherwise, we return @string.
1774 """
1775 assert_is_leaf_string(string)
1776
1777 if "f" in prefix and not fstring_contains_expr(string):
1778 new_prefix = prefix.replace("f", "")
1779
1780 temp = string[len(prefix) :]
1781 temp = re.sub(r"\{\{", "{", temp)
1782 temp = re.sub(r"\}\}", "}", temp)
1783 new_string = temp
1784
1785 return f"{new_prefix}{new_string}"
1786 else:
1787 return string
1788
1789 def _get_string_operator_leaves(self, leaves: Iterable[Leaf]) -> List[Leaf]:
1790 LL = list(leaves)
1791
1792 string_op_leaves = []
1793 i = 0
1794 while LL[i].type in self.STRING_OPERATORS + [token.NAME]:
1795 prefix_leaf = Leaf(LL[i].type, str(LL[i]).strip())
1796 string_op_leaves.append(prefix_leaf)
1797 i += 1
1798 return string_op_leaves
1799
1800
1801 class StringParenWrapper(BaseStringSplitter, CustomSplitMapMixin):
1802 """
1803 StringTransformer that wraps strings in parens and then splits at the LPAR.
1804
1805 Requirements:
1806 All of the requirements listed in BaseStringSplitter's docstring in
1807 addition to the requirements listed below:
1808
1809 * The line is a return/yield statement, which returns/yields a string.
1810 OR
1811 * The line is part of a ternary expression (e.g. `x = y if cond else
1812 z`) such that the line starts with `else <string>`, where <string> is
1813 some string.
1814 OR
1815 * The line is an assert statement, which ends with a string.
1816 OR
1817 * The line is an assignment statement (e.g. `x = <string>` or `x +=
1818 <string>`) such that the variable is being assigned the value of some
1819 string.
1820 OR
1821 * The line is a dictionary key assignment where some valid key is being
1822 assigned the value of some string.
1823 OR
1824 * The line is an lambda expression and the value is a string.
1825 OR
1826 * The line starts with an "atom" string that prefers to be wrapped in
1827 parens. It's preferred to be wrapped when it's is an immediate child of
1828 a list/set/tuple literal, AND the string is surrounded by commas (or is
1829 the first/last child).
1830
1831 Transformations:
1832 The chosen string is wrapped in parentheses and then split at the LPAR.
1833
1834 We then have one line which ends with an LPAR and another line that
1835 starts with the chosen string. The latter line is then split again at
1836 the RPAR. This results in the RPAR (and possibly a trailing comma)
1837 being placed on its own line.
1838
1839 NOTE: If any leaves exist to the right of the chosen string (except
1840 for a trailing comma, which would be placed after the RPAR), those
1841 leaves are placed inside the parentheses. In effect, the chosen
1842 string is not necessarily being "wrapped" by parentheses. We can,
1843 however, count on the LPAR being placed directly before the chosen
1844 string.
1845
1846 In other words, StringParenWrapper creates "atom" strings. These
1847 can then be split again by StringSplitter, if necessary.
1848
1849 Collaborations:
1850 In the event that a string line split by StringParenWrapper is
1851 changed such that it no longer needs to be given its own line,
1852 StringParenWrapper relies on StringParenStripper to clean up the
1853 parentheses it created.
1854
1855 For "atom" strings that prefers to be wrapped in parens, it requires
1856 StringSplitter to hold the split until the string is wrapped in parens.
1857 """
1858
1859 def do_splitter_match(self, line: Line) -> TMatchResult:
1860 LL = line.leaves
1861
1862 if line.leaves[-1].type in OPENING_BRACKETS:
1863 return TErr(
1864 "Cannot wrap parens around a line that ends in an opening bracket."
1865 )
1866
1867 string_idx = (
1868 self._return_match(LL)
1869 or self._else_match(LL)
1870 or self._assert_match(LL)
1871 or self._assign_match(LL)
1872 or self._dict_or_lambda_match(LL)
1873 or self._prefer_paren_wrap_match(LL)
1874 )
1875
1876 if string_idx is not None:
1877 string_value = line.leaves[string_idx].value
1878 # If the string has neither spaces nor East Asian stops...
1879 if not any(
1880 char == " " or char in SPLIT_SAFE_CHARS for char in string_value
1881 ):
1882 # And will still violate the line length limit when split...
1883 max_string_width = self.line_length - ((line.depth + 1) * 4)
1884 if str_width(string_value) > max_string_width:
1885 # And has no associated custom splits...
1886 if not self.has_custom_splits(string_value):
1887 # Then we should NOT put this string on its own line.
1888 return TErr(
1889 "We do not wrap long strings in parentheses when the"
1890 " resultant line would still be over the specified line"
1891 " length and can't be split further by StringSplitter."
1892 )
1893 return Ok([string_idx])
1894
1895 return TErr("This line does not contain any non-atomic strings.")
1896
1897 @staticmethod
1898 def _return_match(LL: List[Leaf]) -> Optional[int]:
1899 """
1900 Returns:
1901 string_idx such that @LL[string_idx] is equal to our target (i.e.
1902 matched) string, if this line matches the return/yield statement
1903 requirements listed in the 'Requirements' section of this classes'
1904 docstring.
1905 OR
1906 None, otherwise.
1907 """
1908 # If this line is apart of a return/yield statement and the first leaf
1909 # contains either the "return" or "yield" keywords...
1910 if parent_type(LL[0]) in [syms.return_stmt, syms.yield_expr] and LL[
1911 0
1912 ].value in ["return", "yield"]:
1913 is_valid_index = is_valid_index_factory(LL)
1914
1915 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1916 # The next visible leaf MUST contain a string...
1917 if is_valid_index(idx) and LL[idx].type == token.STRING:
1918 return idx
1919
1920 return None
1921
1922 @staticmethod
1923 def _else_match(LL: List[Leaf]) -> Optional[int]:
1924 """
1925 Returns:
1926 string_idx such that @LL[string_idx] is equal to our target (i.e.
1927 matched) string, if this line matches the ternary expression
1928 requirements listed in the 'Requirements' section of this classes'
1929 docstring.
1930 OR
1931 None, otherwise.
1932 """
1933 # If this line is apart of a ternary expression and the first leaf
1934 # contains the "else" keyword...
1935 if (
1936 parent_type(LL[0]) == syms.test
1937 and LL[0].type == token.NAME
1938 and LL[0].value == "else"
1939 ):
1940 is_valid_index = is_valid_index_factory(LL)
1941
1942 idx = 2 if is_valid_index(1) and is_empty_par(LL[1]) else 1
1943 # The next visible leaf MUST contain a string...
1944 if is_valid_index(idx) and LL[idx].type == token.STRING:
1945 return idx
1946
1947 return None
1948
1949 @staticmethod
1950 def _assert_match(LL: List[Leaf]) -> Optional[int]:
1951 """
1952 Returns:
1953 string_idx such that @LL[string_idx] is equal to our target (i.e.
1954 matched) string, if this line matches the assert statement
1955 requirements listed in the 'Requirements' section of this classes'
1956 docstring.
1957 OR
1958 None, otherwise.
1959 """
1960 # If this line is apart of an assert statement and the first leaf
1961 # contains the "assert" keyword...
1962 if parent_type(LL[0]) == syms.assert_stmt and LL[0].value == "assert":
1963 is_valid_index = is_valid_index_factory(LL)
1964
1965 for i, leaf in enumerate(LL):
1966 # We MUST find a comma...
1967 if leaf.type == token.COMMA:
1968 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
1969
1970 # That comma MUST be followed by a string...
1971 if is_valid_index(idx) and LL[idx].type == token.STRING:
1972 string_idx = idx
1973
1974 # Skip the string trailer, if one exists.
1975 string_parser = StringParser()
1976 idx = string_parser.parse(LL, string_idx)
1977
1978 # But no more leaves are allowed...
1979 if not is_valid_index(idx):
1980 return string_idx
1981
1982 return None
1983
1984 @staticmethod
1985 def _assign_match(LL: List[Leaf]) -> Optional[int]:
1986 """
1987 Returns:
1988 string_idx such that @LL[string_idx] is equal to our target (i.e.
1989 matched) string, if this line matches the assignment statement
1990 requirements listed in the 'Requirements' section of this classes'
1991 docstring.
1992 OR
1993 None, otherwise.
1994 """
1995 # If this line is apart of an expression statement or is a function
1996 # argument AND the first leaf contains a variable name...
1997 if (
1998 parent_type(LL[0]) in [syms.expr_stmt, syms.argument, syms.power]
1999 and LL[0].type == token.NAME
2000 ):
2001 is_valid_index = is_valid_index_factory(LL)
2002
2003 for i, leaf in enumerate(LL):
2004 # We MUST find either an '=' or '+=' symbol...
2005 if leaf.type in [token.EQUAL, token.PLUSEQUAL]:
2006 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2007
2008 # That symbol MUST be followed by a string...
2009 if is_valid_index(idx) and LL[idx].type == token.STRING:
2010 string_idx = idx
2011
2012 # Skip the string trailer, if one exists.
2013 string_parser = StringParser()
2014 idx = string_parser.parse(LL, string_idx)
2015
2016 # The next leaf MAY be a comma iff this line is apart
2017 # of a function argument...
2018 if (
2019 parent_type(LL[0]) == syms.argument
2020 and is_valid_index(idx)
2021 and LL[idx].type == token.COMMA
2022 ):
2023 idx += 1
2024
2025 # But no more leaves are allowed...
2026 if not is_valid_index(idx):
2027 return string_idx
2028
2029 return None
2030
2031 @staticmethod
2032 def _dict_or_lambda_match(LL: List[Leaf]) -> Optional[int]:
2033 """
2034 Returns:
2035 string_idx such that @LL[string_idx] is equal to our target (i.e.
2036 matched) string, if this line matches the dictionary key assignment
2037 statement or lambda expression requirements listed in the
2038 'Requirements' section of this classes' docstring.
2039 OR
2040 None, otherwise.
2041 """
2042 # If this line is a part of a dictionary key assignment or lambda expression...
2043 parent_types = [parent_type(LL[0]), parent_type(LL[0].parent)]
2044 if syms.dictsetmaker in parent_types or syms.lambdef in parent_types:
2045 is_valid_index = is_valid_index_factory(LL)
2046
2047 for i, leaf in enumerate(LL):
2048 # We MUST find a colon, it can either be dict's or lambda's colon...
2049 if leaf.type == token.COLON and i < len(LL) - 1:
2050 idx = i + 2 if is_empty_par(LL[i + 1]) else i + 1
2051
2052 # That colon MUST be followed by a string...
2053 if is_valid_index(idx) and LL[idx].type == token.STRING:
2054 string_idx = idx
2055
2056 # Skip the string trailer, if one exists.
2057 string_parser = StringParser()
2058 idx = string_parser.parse(LL, string_idx)
2059
2060 # That string MAY be followed by a comma...
2061 if is_valid_index(idx) and LL[idx].type == token.COMMA:
2062 idx += 1
2063
2064 # But no more leaves are allowed...
2065 if not is_valid_index(idx):
2066 return string_idx
2067
2068 return None
2069
2070 def do_transform(
2071 self, line: Line, string_indices: List[int]
2072 ) -> Iterator[TResult[Line]]:
2073 LL = line.leaves
2074 assert len(string_indices) == 1, (
2075 f"{self.__class__.__name__} should only find one match at a time, found"
2076 f" {len(string_indices)}"
2077 )
2078 string_idx = string_indices[0]
2079
2080 is_valid_index = is_valid_index_factory(LL)
2081 insert_str_child = insert_str_child_factory(LL[string_idx])
2082
2083 comma_idx = -1
2084 ends_with_comma = False
2085 if LL[comma_idx].type == token.COMMA:
2086 ends_with_comma = True
2087
2088 leaves_to_steal_comments_from = [LL[string_idx]]
2089 if ends_with_comma:
2090 leaves_to_steal_comments_from.append(LL[comma_idx])
2091
2092 # --- First Line
2093 first_line = line.clone()
2094 left_leaves = LL[:string_idx]
2095
2096 # We have to remember to account for (possibly invisible) LPAR and RPAR
2097 # leaves that already wrapped the target string. If these leaves do
2098 # exist, we will replace them with our own LPAR and RPAR leaves.
2099 old_parens_exist = False
2100 if left_leaves and left_leaves[-1].type == token.LPAR:
2101 old_parens_exist = True
2102 leaves_to_steal_comments_from.append(left_leaves[-1])
2103 left_leaves.pop()
2104
2105 append_leaves(first_line, line, left_leaves)
2106
2107 lpar_leaf = Leaf(token.LPAR, "(")
2108 if old_parens_exist:
2109 replace_child(LL[string_idx - 1], lpar_leaf)
2110 else:
2111 insert_str_child(lpar_leaf)
2112 first_line.append(lpar_leaf)
2113
2114 # We throw inline comments that were originally to the right of the
2115 # target string to the top line. They will now be shown to the right of
2116 # the LPAR.
2117 for leaf in leaves_to_steal_comments_from:
2118 for comment_leaf in line.comments_after(leaf):
2119 first_line.append(comment_leaf, preformatted=True)
2120
2121 yield Ok(first_line)
2122
2123 # --- Middle (String) Line
2124 # We only need to yield one (possibly too long) string line, since the
2125 # `StringSplitter` will break it down further if necessary.
2126 string_value = LL[string_idx].value
2127 string_line = Line(
2128 mode=line.mode,
2129 depth=line.depth + 1,
2130 inside_brackets=True,
2131 should_split_rhs=line.should_split_rhs,
2132 magic_trailing_comma=line.magic_trailing_comma,
2133 )
2134 string_leaf = Leaf(token.STRING, string_value)
2135 insert_str_child(string_leaf)
2136 string_line.append(string_leaf)
2137
2138 old_rpar_leaf = None
2139 if is_valid_index(string_idx + 1):
2140 right_leaves = LL[string_idx + 1 :]
2141 if ends_with_comma:
2142 right_leaves.pop()
2143
2144 if old_parens_exist:
2145 assert right_leaves and right_leaves[-1].type == token.RPAR, (
2146 "Apparently, old parentheses do NOT exist?!"
2147 f" (left_leaves={left_leaves}, right_leaves={right_leaves})"
2148 )
2149 old_rpar_leaf = right_leaves.pop()
2150 elif right_leaves and right_leaves[-1].type == token.RPAR:
2151 # Special case for lambda expressions as dict's value, e.g.:
2152 # my_dict = {
2153 # "key": lambda x: f"formatted: {x},
2154 # }
2155 # After wrapping the dict's value with parentheses, the string is
2156 # followed by a RPAR but its opening bracket is lambda's, not
2157 # the string's:
2158 # "key": (lambda x: f"formatted: {x}),
2159 opening_bracket = right_leaves[-1].opening_bracket
2160 if opening_bracket is not None and opening_bracket in left_leaves:
2161 index = left_leaves.index(opening_bracket)
2162 if (
2163 index > 0
2164 and index < len(left_leaves) - 1
2165 and left_leaves[index - 1].type == token.COLON
2166 and left_leaves[index + 1].value == "lambda"
2167 ):
2168 right_leaves.pop()
2169
2170 append_leaves(string_line, line, right_leaves)
2171
2172 yield Ok(string_line)
2173
2174 # --- Last Line
2175 last_line = line.clone()
2176 last_line.bracket_tracker = first_line.bracket_tracker
2177
2178 new_rpar_leaf = Leaf(token.RPAR, ")")
2179 if old_rpar_leaf is not None:
2180 replace_child(old_rpar_leaf, new_rpar_leaf)
2181 else:
2182 insert_str_child(new_rpar_leaf)
2183 last_line.append(new_rpar_leaf)
2184
2185 # If the target string ended with a comma, we place this comma to the
2186 # right of the RPAR on the last line.
2187 if ends_with_comma:
2188 comma_leaf = Leaf(token.COMMA, ",")
2189 replace_child(LL[comma_idx], comma_leaf)
2190 last_line.append(comma_leaf)
2191
2192 yield Ok(last_line)
2193
2194
2195 class StringParser:
2196 """
2197 A state machine that aids in parsing a string's "trailer", which can be
2198 either non-existent, an old-style formatting sequence (e.g. `% varX` or `%
2199 (varX, varY)`), or a method-call / attribute access (e.g. `.format(varX,
2200 varY)`).
2201
2202 NOTE: A new StringParser object MUST be instantiated for each string
2203 trailer we need to parse.
2204
2205 Examples:
2206 We shall assume that `line` equals the `Line` object that corresponds
2207 to the following line of python code:
2208 ```
2209 x = "Some {}.".format("String") + some_other_string
2210 ```
2211
2212 Furthermore, we will assume that `string_idx` is some index such that:
2213 ```
2214 assert line.leaves[string_idx].value == "Some {}."
2215 ```
2216
2217 The following code snippet then holds:
2218 ```
2219 string_parser = StringParser()
2220 idx = string_parser.parse(line.leaves, string_idx)
2221 assert line.leaves[idx].type == token.PLUS
2222 ```
2223 """
2224
2225 DEFAULT_TOKEN: Final = 20210605
2226
2227 # String Parser States
2228 START: Final = 1
2229 DOT: Final = 2
2230 NAME: Final = 3
2231 PERCENT: Final = 4
2232 SINGLE_FMT_ARG: Final = 5
2233 LPAR: Final = 6
2234 RPAR: Final = 7
2235 DONE: Final = 8
2236
2237 # Lookup Table for Next State
2238 _goto: Final[Dict[Tuple[ParserState, NodeType], ParserState]] = {
2239 # A string trailer may start with '.' OR '%'.
2240 (START, token.DOT): DOT,
2241 (START, token.PERCENT): PERCENT,
2242 (START, DEFAULT_TOKEN): DONE,
2243 # A '.' MUST be followed by an attribute or method name.
2244 (DOT, token.NAME): NAME,
2245 # A method name MUST be followed by an '(', whereas an attribute name
2246 # is the last symbol in the string trailer.
2247 (NAME, token.LPAR): LPAR,
2248 (NAME, DEFAULT_TOKEN): DONE,
2249 # A '%' symbol can be followed by an '(' or a single argument (e.g. a
2250 # string or variable name).
2251 (PERCENT, token.LPAR): LPAR,
2252 (PERCENT, DEFAULT_TOKEN): SINGLE_FMT_ARG,
2253 # If a '%' symbol is followed by a single argument, that argument is
2254 # the last leaf in the string trailer.
2255 (SINGLE_FMT_ARG, DEFAULT_TOKEN): DONE,
2256 # If present, a ')' symbol is the last symbol in a string trailer.
2257 # (NOTE: LPARS and nested RPARS are not included in this lookup table,
2258 # since they are treated as a special case by the parsing logic in this
2259 # classes' implementation.)
2260 (RPAR, DEFAULT_TOKEN): DONE,
2261 }
2262
2263 def __init__(self) -> None:
2264 self._state = self.START
2265 self._unmatched_lpars = 0
2266
2267 def parse(self, leaves: List[Leaf], string_idx: int) -> int:
2268 """
2269 Pre-conditions:
2270 * @leaves[@string_idx].type == token.STRING
2271
2272 Returns:
2273 The index directly after the last leaf which is apart of the string
2274 trailer, if a "trailer" exists.
2275 OR
2276 @string_idx + 1, if no string "trailer" exists.
2277 """
2278 assert leaves[string_idx].type == token.STRING
2279
2280 idx = string_idx + 1
2281 while idx < len(leaves) and self._next_state(leaves[idx]):
2282 idx += 1
2283 return idx
2284
2285 def _next_state(self, leaf: Leaf) -> bool:
2286 """
2287 Pre-conditions:
2288 * On the first call to this function, @leaf MUST be the leaf that
2289 was directly after the string leaf in question (e.g. if our target
2290 string is `line.leaves[i]` then the first call to this method must
2291 be `line.leaves[i + 1]`).
2292 * On the next call to this function, the leaf parameter passed in
2293 MUST be the leaf directly following @leaf.
2294
2295 Returns:
2296 True iff @leaf is apart of the string's trailer.
2297 """
2298 # We ignore empty LPAR or RPAR leaves.
2299 if is_empty_par(leaf):
2300 return True
2301
2302 next_token = leaf.type
2303 if next_token == token.LPAR:
2304 self._unmatched_lpars += 1
2305
2306 current_state = self._state
2307
2308 # The LPAR parser state is a special case. We will return True until we
2309 # find the matching RPAR token.
2310 if current_state == self.LPAR:
2311 if next_token == token.RPAR:
2312 self._unmatched_lpars -= 1
2313 if self._unmatched_lpars == 0:
2314 self._state = self.RPAR
2315 # Otherwise, we use a lookup table to determine the next state.
2316 else:
2317 # If the lookup table matches the current state to the next
2318 # token, we use the lookup table.
2319 if (current_state, next_token) in self._goto:
2320 self._state = self._goto[current_state, next_token]
2321 else:
2322 # Otherwise, we check if a the current state was assigned a
2323 # default.
2324 if (current_state, self.DEFAULT_TOKEN) in self._goto:
2325 self._state = self._goto[current_state, self.DEFAULT_TOKEN]
2326 # If no default has been assigned, then this parser has a logic
2327 # error.
2328 else:
2329 raise RuntimeError(f"{self.__class__.__name__} LOGIC ERROR!")
2330
2331 if self._state == self.DONE:
2332 return False
2333
2334 return True
2335
2336
2337 def insert_str_child_factory(string_leaf: Leaf) -> Callable[[LN], None]:
2338 """
2339 Factory for a convenience function that is used to orphan @string_leaf
2340 and then insert multiple new leaves into the same part of the node
2341 structure that @string_leaf had originally occupied.
2342
2343 Examples:
2344 Let `string_leaf = Leaf(token.STRING, '"foo"')` and `N =
2345 string_leaf.parent`. Assume the node `N` has the following
2346 original structure:
2347
2348 Node(
2349 expr_stmt, [
2350 Leaf(NAME, 'x'),
2351 Leaf(EQUAL, '='),
2352 Leaf(STRING, '"foo"'),
2353 ]
2354 )
2355
2356 We then run the code snippet shown below.
2357 ```
2358 insert_str_child = insert_str_child_factory(string_leaf)
2359
2360 lpar = Leaf(token.LPAR, '(')
2361 insert_str_child(lpar)
2362
2363 bar = Leaf(token.STRING, '"bar"')
2364 insert_str_child(bar)
2365
2366 rpar = Leaf(token.RPAR, ')')
2367 insert_str_child(rpar)
2368 ```
2369
2370 After which point, it follows that `string_leaf.parent is None` and
2371 the node `N` now has the following structure:
2372
2373 Node(
2374 expr_stmt, [
2375 Leaf(NAME, 'x'),
2376 Leaf(EQUAL, '='),
2377 Leaf(LPAR, '('),
2378 Leaf(STRING, '"bar"'),
2379 Leaf(RPAR, ')'),
2380 ]
2381 )
2382 """
2383 string_parent = string_leaf.parent
2384 string_child_idx = string_leaf.remove()
2385
2386 def insert_str_child(child: LN) -> None:
2387 nonlocal string_child_idx
2388
2389 assert string_parent is not None
2390 assert string_child_idx is not None
2391
2392 string_parent.insert_child(string_child_idx, child)
2393 string_child_idx += 1
2394
2395 return insert_str_child
2396
2397
2398 def is_valid_index_factory(seq: Sequence[Any]) -> Callable[[int], bool]:
2399 """
2400 Examples:
2401 ```
2402 my_list = [1, 2, 3]
2403
2404 is_valid_index = is_valid_index_factory(my_list)
2405
2406 assert is_valid_index(0)
2407 assert is_valid_index(2)
2408
2409 assert not is_valid_index(3)
2410 assert not is_valid_index(-1)
2411 ```
2412 """
2413
2414 def is_valid_index(idx: int) -> bool:
2415 """
2416 Returns:
2417 True iff @idx is positive AND seq[@idx] does NOT raise an
2418 IndexError.
2419 """
2420 return 0 <= idx < len(seq)
2421
2422 return is_valid_index