]> crepu.dev Git - config.git/blob - djavu-asus/elpy/rpc-venv/lib/python3.11/site-packages/jedi/inference/gradual/annotation.py
ActualizaciĆ³n de Readme
[config.git] / djavu-asus / elpy / rpc-venv / lib / python3.11 / site-packages / jedi / inference / gradual / annotation.py
1 """
2 PEP 0484 ( https://www.python.org/dev/peps/pep-0484/ ) describes type hints
3 through function annotations. There is a strong suggestion in this document
4 that only the type of type hinting defined in PEP0484 should be allowed
5 as annotations in future python versions.
6 """
7
8 import re
9 from inspect import Parameter
10
11 from parso import ParserSyntaxError, parse
12
13 from jedi.inference.cache import inference_state_method_cache
14 from jedi.inference.base_value import ValueSet, NO_VALUES
15 from jedi.inference.gradual.base import DefineGenericBaseClass, GenericClass
16 from jedi.inference.gradual.generics import TupleGenericManager
17 from jedi.inference.gradual.type_var import TypeVar
18 from jedi.inference.helpers import is_string
19 from jedi.inference.compiled import builtin_from_name
20 from jedi.inference.param import get_executed_param_names
21 from jedi import debug
22 from jedi import parser_utils
23
24
25 def infer_annotation(context, annotation):
26 """
27 Inferes an annotation node. This means that it inferes the part of
28 `int` here:
29
30 foo: int = 3
31
32 Also checks for forward references (strings)
33 """
34 value_set = context.infer_node(annotation)
35 if len(value_set) != 1:
36 debug.warning("Inferred typing index %s should lead to 1 object, "
37 " not %s" % (annotation, value_set))
38 return value_set
39
40 inferred_value = list(value_set)[0]
41 if is_string(inferred_value):
42 result = _get_forward_reference_node(context, inferred_value.get_safe_value())
43 if result is not None:
44 return context.infer_node(result)
45 return value_set
46
47
48 def _infer_annotation_string(context, string, index=None):
49 node = _get_forward_reference_node(context, string)
50 if node is None:
51 return NO_VALUES
52
53 value_set = context.infer_node(node)
54 if index is not None:
55 value_set = value_set.filter(
56 lambda value: (
57 value.array_type == 'tuple'
58 and len(list(value.py__iter__())) >= index
59 )
60 ).py__simple_getitem__(index)
61 return value_set
62
63
64 def _get_forward_reference_node(context, string):
65 try:
66 new_node = context.inference_state.grammar.parse(
67 string,
68 start_symbol='eval_input',
69 error_recovery=False
70 )
71 except ParserSyntaxError:
72 debug.warning('Annotation not parsed: %s' % string)
73 return None
74 else:
75 module = context.tree_node.get_root_node()
76 parser_utils.move(new_node, module.end_pos[0])
77 new_node.parent = context.tree_node
78 return new_node
79
80
81 def _split_comment_param_declaration(decl_text):
82 """
83 Split decl_text on commas, but group generic expressions
84 together.
85
86 For example, given "foo, Bar[baz, biz]" we return
87 ['foo', 'Bar[baz, biz]'].
88
89 """
90 try:
91 node = parse(decl_text, error_recovery=False).children[0]
92 except ParserSyntaxError:
93 debug.warning('Comment annotation is not valid Python: %s' % decl_text)
94 return []
95
96 if node.type in ['name', 'atom_expr', 'power']:
97 return [node.get_code().strip()]
98
99 params = []
100 try:
101 children = node.children
102 except AttributeError:
103 return []
104 else:
105 for child in children:
106 if child.type in ['name', 'atom_expr', 'power']:
107 params.append(child.get_code().strip())
108
109 return params
110
111
112 @inference_state_method_cache()
113 def infer_param(function_value, param, ignore_stars=False):
114 values = _infer_param(function_value, param)
115 if ignore_stars or not values:
116 return values
117 inference_state = function_value.inference_state
118 if param.star_count == 1:
119 tuple_ = builtin_from_name(inference_state, 'tuple')
120 return ValueSet([GenericClass(
121 tuple_,
122 TupleGenericManager((values,)),
123 )])
124 elif param.star_count == 2:
125 dct = builtin_from_name(inference_state, 'dict')
126 generics = (
127 ValueSet([builtin_from_name(inference_state, 'str')]),
128 values
129 )
130 return ValueSet([GenericClass(
131 dct,
132 TupleGenericManager(generics),
133 )])
134 return values
135
136
137 def _infer_param(function_value, param):
138 """
139 Infers the type of a function parameter, using type annotations.
140 """
141 annotation = param.annotation
142 if annotation is None:
143 # If no Python 3-style annotation, look for a comment annotation.
144 # Identify parameters to function in the same sequence as they would
145 # appear in a type comment.
146 all_params = [child for child in param.parent.children
147 if child.type == 'param']
148
149 node = param.parent.parent
150 comment = parser_utils.get_following_comment_same_line(node)
151 if comment is None:
152 return NO_VALUES
153
154 match = re.match(r"^#\s*type:\s*\(([^#]*)\)\s*->", comment)
155 if not match:
156 return NO_VALUES
157 params_comments = _split_comment_param_declaration(match.group(1))
158
159 # Find the specific param being investigated
160 index = all_params.index(param)
161 # If the number of parameters doesn't match length of type comment,
162 # ignore first parameter (assume it's self).
163 if len(params_comments) != len(all_params):
164 debug.warning(
165 "Comments length != Params length %s %s",
166 params_comments, all_params
167 )
168 if function_value.is_bound_method():
169 if index == 0:
170 # Assume it's self, which is already handled
171 return NO_VALUES
172 index -= 1
173 if index >= len(params_comments):
174 return NO_VALUES
175
176 param_comment = params_comments[index]
177 return _infer_annotation_string(
178 function_value.get_default_param_context(),
179 param_comment
180 )
181 # Annotations are like default params and resolve in the same way.
182 context = function_value.get_default_param_context()
183 return infer_annotation(context, annotation)
184
185
186 def py__annotations__(funcdef):
187 dct = {}
188 for function_param in funcdef.get_params():
189 param_annotation = function_param.annotation
190 if param_annotation is not None:
191 dct[function_param.name.value] = param_annotation
192
193 return_annotation = funcdef.annotation
194 if return_annotation:
195 dct['return'] = return_annotation
196 return dct
197
198
199 def resolve_forward_references(context, all_annotations):
200 def resolve(node):
201 if node is None or node.type != 'string':
202 return node
203
204 node = _get_forward_reference_node(
205 context,
206 context.inference_state.compiled_subprocess.safe_literal_eval(
207 node.value,
208 ),
209 )
210
211 if node is None:
212 # There was a string, but it's not a valid annotation
213 return None
214
215 # The forward reference tree has an additional root node ('eval_input')
216 # that we don't want. Extract the node we do want, that is equivalent to
217 # the nodes returned by `py__annotations__` for a non-quoted node.
218 node = node.children[0]
219
220 return node
221
222 return {name: resolve(node) for name, node in all_annotations.items()}
223
224
225 @inference_state_method_cache()
226 def infer_return_types(function, arguments):
227 """
228 Infers the type of a function's return value,
229 according to type annotations.
230 """
231 context = function.get_default_param_context()
232 all_annotations = resolve_forward_references(
233 context,
234 py__annotations__(function.tree_node),
235 )
236 annotation = all_annotations.get("return", None)
237 if annotation is None:
238 # If there is no Python 3-type annotation, look for an annotation
239 # comment.
240 node = function.tree_node
241 comment = parser_utils.get_following_comment_same_line(node)
242 if comment is None:
243 return NO_VALUES
244
245 match = re.match(r"^#\s*type:\s*\([^#]*\)\s*->\s*([^#]*)", comment)
246 if not match:
247 return NO_VALUES
248
249 return _infer_annotation_string(
250 context,
251 match.group(1).strip()
252 ).execute_annotation()
253
254 unknown_type_vars = find_unknown_type_vars(context, annotation)
255 annotation_values = infer_annotation(context, annotation)
256 if not unknown_type_vars:
257 return annotation_values.execute_annotation()
258
259 type_var_dict = infer_type_vars_for_execution(function, arguments, all_annotations)
260
261 return ValueSet.from_sets(
262 ann.define_generics(type_var_dict)
263 if isinstance(ann, (DefineGenericBaseClass, TypeVar)) else ValueSet({ann})
264 for ann in annotation_values
265 ).execute_annotation()
266
267
268 def infer_type_vars_for_execution(function, arguments, annotation_dict):
269 """
270 Some functions use type vars that are not defined by the class, but rather
271 only defined in the function. See for example `iter`. In those cases we
272 want to:
273
274 1. Search for undefined type vars.
275 2. Infer type vars with the execution state we have.
276 3. Return the union of all type vars that have been found.
277 """
278 context = function.get_default_param_context()
279
280 annotation_variable_results = {}
281 executed_param_names = get_executed_param_names(function, arguments)
282 for executed_param_name in executed_param_names:
283 try:
284 annotation_node = annotation_dict[executed_param_name.string_name]
285 except KeyError:
286 continue
287
288 annotation_variables = find_unknown_type_vars(context, annotation_node)
289 if annotation_variables:
290 # Infer unknown type var
291 annotation_value_set = context.infer_node(annotation_node)
292 kind = executed_param_name.get_kind()
293 actual_value_set = executed_param_name.infer()
294 if kind is Parameter.VAR_POSITIONAL:
295 actual_value_set = actual_value_set.merge_types_of_iterate()
296 elif kind is Parameter.VAR_KEYWORD:
297 # TODO _dict_values is not public.
298 actual_value_set = actual_value_set.try_merge('_dict_values')
299 merge_type_var_dicts(
300 annotation_variable_results,
301 annotation_value_set.infer_type_vars(actual_value_set),
302 )
303 return annotation_variable_results
304
305
306 def infer_return_for_callable(arguments, param_values, result_values):
307 all_type_vars = {}
308 for pv in param_values:
309 if pv.array_type == 'list':
310 type_var_dict = _infer_type_vars_for_callable(arguments, pv.py__iter__())
311 all_type_vars.update(type_var_dict)
312
313 return ValueSet.from_sets(
314 v.define_generics(all_type_vars)
315 if isinstance(v, (DefineGenericBaseClass, TypeVar))
316 else ValueSet({v})
317 for v in result_values
318 ).execute_annotation()
319
320
321 def _infer_type_vars_for_callable(arguments, lazy_params):
322 """
323 Infers type vars for the Calllable class:
324
325 def x() -> Callable[[Callable[..., _T]], _T]: ...
326 """
327 annotation_variable_results = {}
328 for (_, lazy_value), lazy_callable_param in zip(arguments.unpack(), lazy_params):
329 callable_param_values = lazy_callable_param.infer()
330 # Infer unknown type var
331 actual_value_set = lazy_value.infer()
332 merge_type_var_dicts(
333 annotation_variable_results,
334 callable_param_values.infer_type_vars(actual_value_set),
335 )
336 return annotation_variable_results
337
338
339 def merge_type_var_dicts(base_dict, new_dict):
340 for type_var_name, values in new_dict.items():
341 if values:
342 try:
343 base_dict[type_var_name] |= values
344 except KeyError:
345 base_dict[type_var_name] = values
346
347
348 def merge_pairwise_generics(annotation_value, annotated_argument_class):
349 """
350 Match up the generic parameters from the given argument class to the
351 target annotation.
352
353 This walks the generic parameters immediately within the annotation and
354 argument's type, in order to determine the concrete values of the
355 annotation's parameters for the current case.
356
357 For example, given the following code:
358
359 def values(mapping: Mapping[K, V]) -> List[V]: ...
360
361 for val in values({1: 'a'}):
362 val
363
364 Then this function should be given representations of `Mapping[K, V]`
365 and `Mapping[int, str]`, so that it can determine that `K` is `int and
366 `V` is `str`.
367
368 Note that it is responsibility of the caller to traverse the MRO of the
369 argument type as needed in order to find the type matching the
370 annotation (in this case finding `Mapping[int, str]` as a parent of
371 `Dict[int, str]`).
372
373 Parameters
374 ----------
375
376 `annotation_value`: represents the annotation to infer the concrete
377 parameter types of.
378
379 `annotated_argument_class`: represents the annotated class of the
380 argument being passed to the object annotated by `annotation_value`.
381 """
382
383 type_var_dict = {}
384
385 if not isinstance(annotated_argument_class, DefineGenericBaseClass):
386 return type_var_dict
387
388 annotation_generics = annotation_value.get_generics()
389 actual_generics = annotated_argument_class.get_generics()
390
391 for annotation_generics_set, actual_generic_set in zip(annotation_generics, actual_generics):
392 merge_type_var_dicts(
393 type_var_dict,
394 annotation_generics_set.infer_type_vars(actual_generic_set.execute_annotation()),
395 )
396
397 return type_var_dict
398
399
400 def find_type_from_comment_hint_for(context, node, name):
401 return _find_type_from_comment_hint(context, node, node.children[1], name)
402
403
404 def find_type_from_comment_hint_with(context, node, name):
405 if len(node.children) > 4:
406 # In case there are multiple with_items, we do not want a type hint for
407 # now.
408 return []
409 assert len(node.children[1].children) == 3, \
410 "Can only be here when children[1] is 'foo() as f'"
411 varlist = node.children[1].children[2]
412 return _find_type_from_comment_hint(context, node, varlist, name)
413
414
415 def find_type_from_comment_hint_assign(context, node, name):
416 return _find_type_from_comment_hint(context, node, node.children[0], name)
417
418
419 def _find_type_from_comment_hint(context, node, varlist, name):
420 index = None
421 if varlist.type in ("testlist_star_expr", "exprlist", "testlist"):
422 # something like "a, b = 1, 2"
423 index = 0
424 for child in varlist.children:
425 if child == name:
426 break
427 if child.type == "operator":
428 continue
429 index += 1
430 else:
431 return []
432
433 comment = parser_utils.get_following_comment_same_line(node)
434 if comment is None:
435 return []
436 match = re.match(r"^#\s*type:\s*([^#]*)", comment)
437 if match is None:
438 return []
439 return _infer_annotation_string(
440 context, match.group(1).strip(), index
441 ).execute_annotation()
442
443
444 def find_unknown_type_vars(context, node):
445 def check_node(node):
446 if node.type in ('atom_expr', 'power'):
447 trailer = node.children[-1]
448 if trailer.type == 'trailer' and trailer.children[0] == '[':
449 for subscript_node in _unpack_subscriptlist(trailer.children[1]):
450 check_node(subscript_node)
451 else:
452 found[:] = _filter_type_vars(context.infer_node(node), found)
453
454 found = [] # We're not using a set, because the order matters.
455 check_node(node)
456 return found
457
458
459 def _filter_type_vars(value_set, found=()):
460 new_found = list(found)
461 for type_var in value_set:
462 if isinstance(type_var, TypeVar) and type_var not in found:
463 new_found.append(type_var)
464 return new_found
465
466
467 def _unpack_subscriptlist(subscriptlist):
468 if subscriptlist.type == 'subscriptlist':
469 for subscript in subscriptlist.children[::2]:
470 if subscript.type != 'subscript':
471 yield subscript
472 else:
473 if subscriptlist.type != 'subscript':
474 yield subscriptlist